Format:
1 Online-Ressource (384 Seiten)
ISBN:
9780323851893
Note:
Description based on publisher supplied metadata and other sources
,
Front Cover -- Renewable Hydrogen Production -- Renewable Hydrogen Production -- Copyright -- Contents -- Preface -- Nomenclature -- 1 - Introduction -- 1.1 Fuels Utilization -- 1.2 Hydrogen Properties and Sustainable Development -- 1.3 Hydrogen Storage -- 1.4 Hydrogen Infrastructure, Transportation, and Distribution -- 1.5 Hydrogen Fuel-Cell Applications -- 1.5.1 Proton Exchange Membrane Fuel Cells -- 1.5.2 Phosphoric Acid Fuel Cells -- 1.5.3 Solid Oxide Fuel Cells -- 1.5.4 Alkaline Fuel Cells -- 1.5.5 Ammonia Fuel Cells -- 1.6 Closing Remarks -- 2 - Hydrogen Production Methods -- 2.1 Conventional Hydrogen Production Methods -- 2.1.1 Natural Gas Reforming -- 2.1.2 Coal Gasification -- 2.2 Renewable Hydrogen Production Methods -- 2.2.1 Solar Energy -- 2.2.2 Wind Energy -- 2.2.3 Geothermal Energy -- 2.2.4 Hydro Energy -- 2.2.5 Ocean Thermal Energy Conversion -- 2.2.6 Biomass Gasification -- 2.3 Other Hydrogen Production Methods -- 2.3.1 Nuclear Energy-Based Hydrogen Production -- 2.3.2 Aluminum-Based Hydrogen Production -- 2.3.3 Plasma Reactor-Based Hydrogen Production -- 2.3.4 Ammonia Cracking for Hydrogen Production -- 2.3.5 Ultrasonic-Based Hydrogen Production -- 2.3.6 Chlor-Alkali Electrochemical Process -- 2.3.7 Biological Hydrogen Production -- 2.4 Thermochemical Cycles -- 2.5 Electrolysis -- 2.5.1 Proton Exchange Membrane Electrolyzer -- 2.5.2 Solid Oxide Electrolyzer -- 2.5.3 Alkaline Electrolyzer -- 2.6 Closing Remarks -- 3 - Solar Energy-Based Hydrogen Production -- 3.1 Photoelectrochemical Hydrogen Production -- 3.2 Photonic Hydrogen Production -- 3.3 Solar Photovoltaic Energy -- 3.3.1 Case Study 1 -- 3.3.2 Case Study 2 -- 3.4 Solar Thermal Energy -- 3.5 Solar Thermal Collector -- 3.6 Photocatalysis -- 3.7 Thermolysis -- 3.8 Solar Heliostat -- 3.8.1 Case Study 3 -- Solar heliostat field -- 3.9 Closing Remarks
,
4 - Wind Energy-Based Hydrogen Production -- 4.1 Working Principle and Advantages of Wind Energy -- 4.2 Types of Wind Turbines -- 4.2.1 Horizontal-Axis Wind Turbines -- 4.2.2 Vertical-Axis Wind Turbines -- 4.3 Onshore and Offshore Wind Turbines -- 4.4 Wind Turbine Configuration -- Outline placeholder -- Anemometer -- Blades -- Brake -- Controller -- Gearbox -- Generator -- High-Speed Shaft -- Low-Speed Shaft -- Nacelle -- Pitch -- Rotor -- Tower -- Wind Vane -- Yaw Motor -- Yaw Drive -- 4.5 Wind Energy-Based Hydrogen Production -- 4.5.1 Wind Turbine Thermodynamic Analysis -- Energy analysis -- Exergy analysis -- 4.5.2 Case Study 4 -- Wind turbine farm analysis -- PEM electrolyzer and fuel cell -- Performance assessment -- Sensitivity analyses -- 4.6 Closing Remarks -- 5 - Geothermal Energy-Based Hydrogen Production -- 5.1 Geothermal Energy Advantages and Disadvantages -- 5.1.1 Advantages -- Environment friendly -- Renewable nature -- Massive potential -- Sustainable development -- Suitability for cooling and heating -- Reliability -- No fuel requirement -- Quick evolution -- 5.1.2 Disadvantages -- Environmental issues -- Surface instability (earthquakes) -- Expensive -- Location specific -- Sustainability issues -- 5.2 Geothermal Power Plants -- 5.3 Types of Geothermal Power Plants -- 5.3.1 Dry Steam Power Plants -- 5.3.2 Flash Steam Power Plants -- 5.3.3 Binary Cycle Power Plants -- 5.4 Geothermal Heat Pumps -- 5.5 Types of Geothermal Heat Pumps -- 5.5.1 Closed-Loop Systems -- Horizontal -- Vertical -- Pond/lake -- 5.5.2 Open-Loop System -- 5.5.3 Hybrid Systems -- 5.6 Flashing Types of Geothermal-Assisted Hydrogen Production Plants with Reinjection -- 5.6.1 Single-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.2 Double-Flash Geothermal-Assisted Hydrogen Production Plant -- 5.6.3 Triple-Flash Geothermal-Assisted Hydrogen Production Plant
,
5.7 Case Study 5 -- 5.7.1 Description -- 5.7.2 Analysis -- Flash Chamber -- Separator -- Turbine -- Generator -- Condenser -- Performance Assessment -- 5.7.3 Results and Discussion -- 5.8 Closing Remarks -- 6 - Hydro Energy-Based Hydrogen Production -- 6.1 Working Principle -- 6.2 Advantages and Disadvantages of Hydro Energy -- 6.2.1 Advantages of Hydro Energy -- Renewable energy source -- Contribution in remote community development -- Clean energy source -- Sustainable development -- Cost competitive -- Recreational opportunities -- 6.2.2 Disadvantages of Hydropower -- Environmental impact -- Flood risks -- High upfront capital costs -- Methane and carbon dioxide emissions -- Conflicts -- Droughts -- 6.3 Classification of Hydropower Plants -- 6.4 Hydroelectric Turbine and Generator -- 6.4.1 Hydroelectric Power Plant and Pumped Storage -- 6.5 Types of Hydropower Turbines -- 6.5.1 Impulse Turbine -- Pelton -- Cross-flow -- 6.5.2 Reaction Turbine -- Kaplan -- Francis -- 6.6 Hydropower-Based Hydrogen Production -- 6.6.1 Modeling of Single Penstock -- 6.6.2 Surge Tank Modeling -- 6.6.3 Wave Travel Time -- 6.6.4 Head Loss Coefficient -- 6.7 Closing Remarks -- 7 - Ocean Energy-Based Hydrogen Production -- 7.1 Ocean Energy Productions Steps -- Outline placeholder -- Wind Blows Create Waves -- Waves Approach Land -- Waves Encounter Machines -- Machines Converting Waves into Electricity -- Electricity Provided to the Grid -- Electricity Used for Hydrogen Production -- 7.2 Ocean Energy Conversion -- 7.2.1 Types of Ocean Thermal Energy Conversion Systems -- 7.2.2 Wave Power Generation -- 7.3 Ocean Energy Devices and Designs -- Outline placeholder -- Point Absorber Buoy -- Surface Attenuator -- Oscillating Water Column -- Overtopping Device -- Wave Carpet -- Oscillating Wave Surge Converter -- 7.4 Types of Ocean Energy -- 7.4.1 Ocean Thermal Energy
,
Working principle -- 7.4.2 Osmotic Power -- 7.4.3 Tides and Currents -- Tidal barrage -- Dynamic tidal power -- Tidal current turbine -- 7.5 Advantages and Disadvantages -- 7.5.1 Advantages of Ocean Energy -- Renewable -- Environment friendly -- Abundant and extensively available -- Variety of methods to extract -- Predictable -- Less dependence on foreign oil -- No land damage -- Reliable -- Huge energy amounts can be generated -- Offshore wave-power harnessing -- 7.5.2 Disadvantages of Ocean Energy -- Locations suitability -- Effect on ecosystem -- Source of disturbance -- Wavelength -- Weak rough weather performance -- Visual and noise pollution -- Production costs -- 7.6 Case Study 6 -- 7.6.1 System Description -- 7.6.2 Analysis -- Boiler -- Turbine -- Condenser -- Pump -- PEM electrolyzer -- Performance assessment -- 7.6.3 Results and Discussion -- 7.7 Closing Remarks -- 8 - Biomass Energy-Based Hydrogen Production -- 8.1 Advantages and Disadvantages of Biomass Energy -- 8.1.1 Advantages -- Renewable -- Carbon neutral -- Less fossil fuels dependency -- Versatile -- Availability -- Low comparative cost than fossil fuels -- Waste reduction -- Domestic production -- 8.1.2 Disadvantages -- Not entirely clean -- High comparative cost -- Possible deforestation -- Space -- Water requirement -- Inefficiencies -- Under development -- 8.2 Biomass as a Renewable Energy Resource -- 8.2.1 Biomass Feedstocks -- Devoted energy crops -- Forestry residues -- Agricultural residues -- Animal waste -- Algae -- Sorted municipal waste -- Wood processing residues -- Wet waste -- Wood wastes -- Wood wastes -- Municipal solid wastes and sewage -- Municipal solid wastes and sewage -- Industrial wastes -- Industrial wastes -- 8.2.2 Types of Biomass-Based Hydrogen Production Methods -- 8.3 Pyrolysis -- 8.3.1 Types of Pyrolysis Reactions -- Slow pyrolysis -- Flash pyrolysis
,
Fast pyrolysis -- 8.3.2 Advantages -- 8.3.3 Applications of Pyrolysis -- 8.4 Biomass Gasification -- 8.4.1 Biomass Power to Hydrogen -- 8.5 Types of Gasifiers -- 8.5.1 Counter Current or Updraught Gasifier -- 8.5.2 Cocurrent or Downdraught Gasifiers -- 8.5.3 Fluidized Bed Gasifier -- 8.5.4 Cross-Draught Gasifier -- 8.5.5 Entrained-Flow Gasifier -- 8.6 Case Study 7 -- 8.6.1 System Description -- 8.6.2 Analysis and Assessment -- Biomass gasification unit -- Yield reactor C1 -- Gasification reactor C2 -- Turbine C3 -- Heat exchanger C4 -- Separator C5 -- Heat exchanger C10 -- Heater C13 -- Water-gas shift reaction C14 -- Separator C15 -- Performance indicator -- 8.6.3 Results and Discussion -- 8.7 Closing Remarks -- 9 - Integrated Systems for Hydrogen Production -- 9.1 Status of Integrated Energy Systems -- 9.1.1 Integrated Energy Systems for Buildings -- 9.1.2 Integrated Energy Systems for Hydrogen -- 9.2 Significance of Integrated Energy Systems -- 9.2.1 Efficient Energy Utilization -- 9.2.2 Sustainable Energy Supply -- Power-to-gas -- Power-to-heat -- Battery storage -- 9.2.3 Energy Independence -- 9.2.4 Grid Quality -- 9.2.5 Global Climate Support -- 9.3 Case Study 8 -- 9.3.1 System Description -- 9.3.2 Analysis -- Solar Heliostat Field -- Solar-Assisted Rankine Cycle -- Pump C1 -- Pump C1 -- Heat exchanger C2 -- Heat exchanger C2 -- Steam turbine C3 -- Steam turbine C3 -- Thermochemical Cu-Cl Cycle -- Hydrolysis reactor C7 -- Hydrolysis reactor C7 -- Thermolysis reactor C10 -- Thermolysis reactor C10 -- Electrolysis reactor C14 -- Electrolysis reactor C14 -- Separator C15 -- Separator C15 -- Heater C16 -- Heater C16 -- Dryer C17 -- Dryer C17 -- Absorption Cooling System -- Generator -- Generator -- Condenser -- Condenser -- Throttling valve -- Throttling valve -- Evaporator -- Evaporator -- Absorber -- Absorber -- Pump -- Pump -- Heat exchanger
,
Heat exchanger
Additional Edition:
Erscheint auch als Druck-Ausgabe Dincer, Ibrahim Renewable Hydrogen Production San Diego : Elsevier,c2021 ISBN 9780323851763
Language:
English
Subjects:
Engineering
Keywords:
Wasserstofferzeugung
Bookmarklink