UID:
almahu_9949983158302882
Umfang:
1 online resource (718 pages)
ISBN:
9780323853682
,
0323853684
Inhalt:
Origins and Principles of Clinical Biomechanics in Human Locomotion discusses key concepts of how biomechanics links to the development of pathology through mechanical laws, anatomy, physiology and health. It provides fundamental principles and practical data, and guidance of how to apply these in the clinical biomechanics field. Coverage includes: major joint movement, muscle action around joints, physiology and patho-physiology of bone, muscle and neurologic disorders. This reference is ideal for teaching students in biomechanics, orthopedics and physiotherapy. It should also be of interest to product development engineers, rehabilitation engineers, those working in prosthetics and orthotics, physiotherapists and occupational therapists. The authors explore the simple laws of motion as applied to anatomy and physiology, in order to help readers understand human pathology within the human lower limb and mobility. They then go on to look at materials science concerns within this field, such as engineering stresses and strains, principles and types of material properties and the shaping of structural properties. Readers will also find within this book information on tissue science, force generation, biological sciences, evolution in biomechanics, human gait, functional units of the lower limb and foot, and finally pathomechanical principles; all as applied to clinical biomechanics. Bridges the void between research biomechanics and clinically applied biomechanics Links human locomotive biomechanics to medicine, physiology and evolutionary anatomy and medicine Prepares students, bioengineers and clinicians for the reality of utilizing biomechanical principles in clinical practice, while informing researchers of the environment limits that most clinical biomechanics practice occurs in.
Anmerkung:
Intro -- Clinical Biomechanics in Human Locomotion: Origins and Principles -- Copyright -- Dedication -- Contents -- About the authors -- Foreword -- Preface -- Acknowledgements -- Abbreviations -- Introduction -- Chapter 1: Principles of motion -- Chapter introduction -- 1.1. Basic principles of biomechanics -- 1.1.1. Introduction -- Kinesiology -- Biomechanics -- Kinematics -- Kinetics -- Clinical biomechanics -- 1.1.2. Energetics -- 1.1.3. Describing motion -- Co-ordinate systems -- Co-ordinate systems and joint axes -- Considerations when using reference frames -- 1.1.4. Newtonian mechanics: Applying engineering principles -- First law of motion -- Second law of motion -- Third law of motion -- Newtonian laws in biomechanics -- 1.1.5. Newtons laws in lower limb anatomy and gait -- 1.1.6. Mechanical terminology in biomechanics -- Mass and weight -- Scalars and vectors -- 1.1.7. Force -- Balanced forces -- Unbalanced forces -- Resultant forces -- 1.1.8. Pressure -- 1.1.9. Work, power, and energy -- Work -- Power -- Energy and power -- Conservation of energy -- Potential and kinetic energy -- 1.1.10. Inertia and human centre of mass -- Centre of mass (CoM) -- Centre of gravity (CoG) -- 1.1.11. Section summary -- 1.2. Terminology of motion -- 1.2.1. Introduction -- Speed and velocity -- Acceleration -- Positive and negative acceleration -- 1.2.2. Momentum -- Linear momentum -- Angular momentum -- 1.2.3. Centrifugal and centripetal forces -- 1.2.4. Impulse and impact -- Impulse -- Impact -- 1.2.5. The lower limb as a simple machine: Lever arm principles -- Lever components -- Beam principles -- Resistance (R) -- Effort (E) -- Fulcrum (F) -- 1.2.6. Lever classes found in anatomy -- Class one levers -- Class one lever examples in the lower limb -- Class two levers -- Class two lever examples in the lower limb -- Class three levers.
,
Class three lever examples in the lower limb -- 1.2.7. Why anatomy uses class three levers -- 1.2.8. Complications in lever arm principles in the lower limb -- 1.2.9. Muscle contraction in relation to levers -- 1.2.10. Section summary -- Chapter summary -- References -- Chapter 2: Principles of materials science -- Chapter introduction -- 2.1. The principles of loading materials: Engineering stresses and strains -- 2.1.1. Introduction -- 2.1.2. Stress and strain -- Stress -- Strain -- Types of stresses and strains -- Tensile stress-strain (Poissons ratio) -- Compression stress and strain -- Shear, stress, and strain -- Torsional stress and strain -- 2.1.3. Bending stresses and strains within beams -- Combined loads -- 2.1.4. Material deformations -- Plastic and elastic deformations -- Compliance and stiffness under stress -- Strength and weakness in the concept of stress and strain -- Brittleness and ductility under stress and strain -- Effects of pressure -- 2.1.5. Frictional forces and asperities -- Viscosity -- 2.1.6. Stress and strain relationships in clinical biomechanics -- 2.1.7. Section summary -- 2.2. Principles and types of material properties -- 2.2.1. Introduction -- 2.2.2. Differing material responses to loads -- Isotropic materials -- Anisotropic materials -- Thixotropic materials -- 2.2.3. Newtonian properties and non-Newtonian materials -- Elastic modulus and Hookes law -- Youngs modulus -- Non-Newtonian solids and fluids -- Non-Hookean materials -- 2.2.4. Material resistance, limits, and energy relationships -- Bulk modulus -- Elastic limits -- Elastic fraction -- Hyperelasticity theory -- Pseudo-elasticity theory -- 2.2.5. Material failure under stress -- Yield -- Nonelastic or inelastic and plastic behaviour -- Plastic flow -- Shape memory -- 2.2.6. Material resonance -- 2.2.7. Section summary.
,
2.3. Behaviour of materials under stress -- 2.3.1. Introduction -- 2.3.2. Properties within materials -- Strain or work hardening of materials -- Tensile strength (ultimate tensile strength) -- Ductility and malleability -- Brittle materials -- Hardness -- Shore score -- Toughness -- Composite materials: Expanding properties -- 2.3.3. Fractures and cracks -- Types of fractures -- Fracture toughness -- Stress concentration and fracture propagation -- Intrinsic and extrinsic mechanisms of cracks -- 2.3.4. Viscoelastic properties -- Coefficient of restitution -- Viscoelasticity, anelastic behaviour, and stress-stiffening -- Creep, stress relaxation, and creep fracture -- Fatigue -- 2.3.5. Principles of lubrication -- Coefficient of friction -- Lubrication -- Wear and tear -- Adhesive wear -- Abrasive wear -- 2.3.6. Section summary -- 2.4. The shaping of structural properties -- 2.4.1. Introduction -- 2.4.2. Shapes in altering material properties -- Shapes in altering beam mechanics -- Shapes in altering beam properties -- Critical loading of columns and beams -- 2.4.3. Spring-dampers -- Spring-damping in biological structures -- 2.4.4. Poroelasticity -- 2.4.5. Types of lubrication -- Hydrodynamic lubrication -- Hydrostatic lubrication -- Poroelasticity as a hydrodynamic-hydrostatic lubrication: A solution to friction and wear and tear in biomechanics -- 2.4.6. Tensegrity structures -- 2.4.7. Section summary -- Chapter summary -- References -- Chapter 3: Principles of tissue stress -- Chapter introduction -- 3.1. The construction of musculoskeletal tissue -- 3.1.1. Introduction -- 3.1.2. The nature of musculoskeletal materials -- 3.1.3. The source of biological tissues -- Genetic and epigenetic effects on protein -- 3.1.4. Proteins of the musculoskeletal tissues -- The extracellular matrix -- Construction and mechanical properties of collagen.
,
Types of collagen -- Mineralisation of collagen -- Collagen failure, ageing, and nutritional effects -- Elastin and its properties -- Skeletal muscle proteins -- Keratin -- 3.1.5. The noncollagenous matrix (ground substance) -- 3.1.6. Section summary -- 3.2. Mechanical properties of fascia -- 3.2.1. Introduction -- 3.2.2. Definition and role of the fascial system -- Defining the fascial system -- 3.2.3. Architecture and mechanical properties of fascia -- 3.2.4. Superficial and deep fascia -- Superficial fascia -- Deep fascia -- Mechanical properties of deep fascia -- 3.2.5. Architecture and properties of the loose connective interlayers -- 3.2.6. Specialised fascia and innervation -- The fascia of the lower limbs -- Fascial innervation -- 3.2.7. Fascia in connective tissue hypermobility and hypomobility -- 3.2.8. Deep fascia in pain and pathology -- 3.2.9. Section summary -- 3.3. Architecture and mechanical properties of tendons and ligaments -- 3.3.1. Introduction -- 3.3.2. The tendon-ligament divide -- 3.3.3. Functional considerations of muscle-tendon complexes -- 3.3.4. Structure of tendons -- Collagen matrix and cells -- Noncollagenous tendon matrix -- Inorganic components in tendons -- Hierarchy of the tendon -- 3.3.5. Structures associated with tendons -- Architecture of the tendon sheaths -- Sesamoid bones -- 3.3.6. Architecture of myotendinous and osteotendinous junctions -- Myotendinous junction -- Osteotendinous and osteoligamentous junctions (enthesis organ) -- 3.3.7. Tendon vascular supply and innervation -- Blood supply to tendons -- Innervation of tendons -- 3.3.8. Mechanical properties of tendons -- Viscoelasticity properties of tendons and ligaments -- Tendon tensile strength -- Compression, shear, and friction in tendons -- Elastic energy storage in tendons -- 3.3.9. Positional and energy storage tendons.
,
Energy storage and positional tendons differences in summary -- 3.3.10. Muscular energy buffering by tendons -- 3.3.11. Development, maintenance, pathology, and ageing in tendons -- Tendon pathology -- 3.3.12. Architecture, hierarchy, and biomechanics in ligaments -- Biomechanics of ligament failure -- Effects of exercise and age on ligaments -- 3.3.13. Section summary -- 3.4. Material properties of bone -- 3.4.1. Introduction -- 3.4.2. Architecture of bone -- Osteons -- Bone connective tissue: Periosteum and endosteum -- 3.4.3. Physiology of bone -- 3.4.4. Mechanical properties of bone -- Poroelasticity of bone -- 3.4.5. Bone stress, health, and remodelling -- 3.4.6. Bending moments and stresses in bones -- Femoral bone stresses -- Tibial bone stresses -- Metatarsal bone stresses -- The role of short bones and their stresses -- 3.4.7. Bone at the enthesis and its stresses -- 3.4.8. Bone injury, healing, and disease -- Bone in age and disease -- 3.4.9. Section summary -- 3.5. Architecture of articular cartilage, synovium, and articular mechanics -- 3.5.1. Introduction -- 3.5.2. Anatomy and biomechanics of fibrocartilage -- 3.5.3. Architecture of articular cartilage -- Summary of the characteristics of the zones of articular cartilage -- 3.5.4. Constituents and effects of synovial fluid -- 3.5.5. Mechanical properties and internal joint mechanics -- 3.5.6. Articular cartilage in age, injury, and disease -- 3.5.7. Section summary -- 3.6. Architecture and mechanical properties of skin -- 3.6.1. Introduction -- 3.6.2. Skin architecture -- 3.6.3. Mechanical properties of skin -- 3.6.4. Effects of ageing and injury on the skin -- 3.6.5. Section summary -- Chapter summary -- References -- Chapter 4: Internal force generation -- Chapter introduction -- 4.1. Force-effort generation through skeletal muscle -- 4.1.1. Introduction.
,
4.1.2. Skeletal muscle proteins.
Weitere Ausg.:
Print version: Horwood, Andrew Clinical Biomechanics in Human Locomotion San Diego : Elsevier Science & Technology,c2023 ISBN 9780323852128
Sprache:
Englisch
Bookmarklink