Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    UID:
    almahu_9949984806202882
    Format: 1 online resource (610 pages)
    ISBN: 9780323860178 , 0323860176
    Series Statement: Metal Oxides
    Content: Metal Oxide–Based Heterostructures: Fabrication and Applications provides information on synthesis strategies, structural and hierarchical features, morphological characteristics of metal oxide–based heterostructures, and their diverse applications. This book begins with an introduction to the various multidimensional heterostructures, synthesis aspects, and techniques used to control the formation of heterostructures. Then, the impact of synthesis routes on the formation of mixed metal oxide heterostructures and their properties are analyzed. The effect of nonmetal doping, metal doping, and composites of metal oxide heterostructures on the properties of heterostructures is also addressed and that also includes opportunities for optimization of the material’s performance for specific applications. Special attention is given to the surface characteristics of the metal oxide heterostructures and their impact on the material’s performance, and the applications of metal oxide heterostructures in various fields such as environmental remediation, sensing, organic catalysis, photovoltaics, light emitting materials, and hydrogen production.
    Note: Front Cover -- Metal Oxide-Based Heterostructures -- Metal Oxides Series Edited by Ghenadii Korotcenkov -- Metal Oxide-Based HeterostructuresFabrication and Applications -- Copyright -- Contents -- List of contributors -- Series editor biography -- Preface to the series -- One: Metal oxide-based heterostructures -- 1 - Metal oxide-assisted heterostructures: At a glance -- 1. Introduction -- 2. Characteristics of metal oxides -- 2.1 Crystal structures -- 2.2 Morphological characteristics -- 2.3 Optical and electronic characteristics -- 3. Synthesis techniques exclusively used for metal oxide-assisted heterostructures -- 3.1 Sol-gel method -- 3.2 Hydrothermal method -- 3.3 Solution combustion method -- 3.4 Electrochemical anodization method -- 3.5 Solid-state reaction method -- 3.6 Solvothermal method -- 3.7 Co-precipitation method -- 4. Typical metal oxide-assisted heterostructures -- 4.1 TiO2-based heterostructures -- 4.2 ZnO-based heterostructures -- 4.3 SnO2-based heterostructures -- 4.4 Bi2O3-based heterostructures -- 4.5 Polymer/metal oxide heterostructures -- 5. Techniques to alter the characteristics of heterostructures -- 5.1 Metal doping -- 5.2 Nonmetal doping -- 5.3 Surface modification -- 6. Tools to uncover the characteristics of metal oxide heterostructures -- 6.1 X-ray diffractometer -- 6.2 UV-visible spectroscopy -- 6.3 Field emission scanning electron microscope -- 6.4 Transmission electron microscope -- 6.5 BET surface area analyzer -- 7. Brief overview of applications of metal oxide-assisted heterostructures -- 7.1 Photocatalysis -- 7.2 Energy and storage devices -- 7.3 Gas adsorption -- 7.4 Metal oxide in sensing -- 7.5 Biomedical application -- 8. Summary and future perspective -- References -- 2 - Interface effects in metal oxide heterostructures -- 1. Introduction -- 2. Background theory of heterojunctions. , 2.1 Straddled alignment -- 2.2 Staggered alignment -- 2.3 Type II Z-Scheme alignment -- 2.4 Broken gap alignment -- 2.5 The role of heterojunction interface on gas sensors -- 2.6 Effect of interface on metal oxide heterostructures for luminescence display devices -- 2.7 Effect of interface on metal oxide heterostructures for photovoltaic and solar cell applications -- 2.8 Effect of interface on metal oxide heterostructures for photocatalysts/catalysts -- 2.8.1 Nanostructuring, surface, and interface engineering -- 2.8.2 Single atom catalysts and atomically dispersed catalysts -- 2.8.3 Preparation and characterization techniques -- 2.9 Effect of interface on metal oxide heterostructures for antimicrobial activity and environmental remediation -- 2.9.1 Several approaches used for photocatalytic activity enhancement -- 3. Conclusion and remarks -- References -- 3 - Nanoscale phenomena in metal oxide heterostructures -- 1. Introduction -- 2. Concepts in nanoscale properties for structure modifications of metal oxides -- 2.1 Quantum confinement -- 2.2 Morphology and crystal planes or facets -- 2.3 Defects and vacancies -- 3. Nano-interfaces dimensions effects in metal oxide heterostructures performances -- 3.1 0D/1D heterojunctions interfaces -- 3.2 0D/2D heterojunctions interfaces -- 3.3 2D/2D heterojunctions interfaces -- 3.4 Homojunctions nanoscale interfaces -- 4. Conclusion -- References -- 4 - Metal oxide-based nanocomposites: greener synthesis routes and their potentiality -- 1. Introduction -- 2. Principles of green chemistry -- 3. Green synthesis approach: advantage over other traditional techniques -- 4. Greener routes and associated entities -- 4.1 Plant extracts -- 4.2 Microbes-mediated synthesis -- 4.2.1 Bacteria -- 4.2.2 Fungus -- 4.2.3 Viruses -- 4.3 Biodegradable polymer and enzymes. , 4.4 Agricultural (plant's residue) and industrial wastes -- 4.5 Ionic liquids in green synthesis of metal oxide nanocomposites -- 4.6 Conclusions and future perspectives -- References -- 5 - Polymer-metal oxide heterostructures: formation, characteristics and applications -- 1. Highlights -- 2. Introduction -- 2.1 Trends of polymer-metal oxide heterostructures -- 2.2 Suitability of polymer-metal oxides heterostructures -- 3. Formation of polymer-metal oxide heterostructures -- 3.1 Formation of PANi/MO heterostructures -- 3.2 Formation of PEDOT/, PEDOT:PSS/MO heterostructures -- 3.3 Formation of PTh/MO heterostructures -- 3.4 Formation of PPy/MO heterostructures -- 4. Characteristics: crystallographic and morphological -- 4.1 Crystallographic characteristics -- 4.1.1 PANi/metal oxides heterostructures -- 4.1.2 PEDOT/, PEDOT:PSS/metal oxides heterostructures -- 4.1.3 PTh/metal oxides heterostructures -- 4.1.4 PPy/metal oxides heterostructures -- 4.2 Morphological characterization -- 4.2.1 SEM/FESEM analysis -- 4.2.1.1 PANi/metal oxides heterostructures -- 4.2.1.2 PEDOT/, PEDOT:PSS/metal oxides heterostructures -- 4.2.1.3 PTh/metal oxides heterostructures -- 4.2.1.4 PPy/metal oxides heterostructures -- 4.2.2 TEM analysis -- 5. Applications of polymer-metal oxide heterostructures -- 5.1 Gas sensors -- 5.1.1 Gas response of PANi/metal oxides heterostructures -- 5.1.2 Gas response of PEDOT:PSS/metal oxides heterostructures -- 5.1.3 Gas response of PTh/metal oxides heterostructures -- 5.1.4 Gas response of PPy/metal oxides heterostructures -- 5.2 Supercapacitors -- 6. Conclusions and future directions -- Acknowledgments -- References -- Further reading -- Two - Metal oxide-based heterostructures and their applications -- 6 - Recent advancement in the development of metal oxide heterostructures for environmental remediation -- 1. Introduction. , 2. Structure interface dynamics of heterostructured metal oxide photocatalysts -- 2.1 Aspects of the photocatalytic degradation mechanism -- 2.2 Descriptors of heterostructured interfaces for improved photocatalytic activity -- 3. Applications of heterostructured metal oxides for removal of pollutants -- 3.1 Photocatalytic degradation of organic liquid pollutants -- 3.1.1 Heterostructured interfaces wide band gap semiconductors photocatalysts -- 3.1.2 Visible-light-sensitized narrow band gap heterostructured metal oxides -- 3.2 Heterostructured metal oxides for removal of inorganic pollutants -- 3.3 Heterostructured metal oxide photocatalysts for removal of Cr(VI) pollutant -- 3.3.1 Wide band gap heterostructured metal oxide for Cr(VI) photoreduction -- 3.3.2 Visible light sensitize metal sulfides heterostructures for Cr(VI) photoreduction -- 3.4 Heterostructured metal oxide photocatalysts for removal of other heavy metals -- 4. Conclusion and outlook -- References -- 7 - Fabrication of metal oxide heterostructures for the application in chemoresistive gas sensors -- 1. Introduction -- 2. Fabrication methods for semiconducting metal oxide-based heterostructures -- 2.1 Hydro/solvothermal method -- 2.2 Sol-gel method -- 2.3 Microemulsion method -- 2.4 The microwave-assisted synthesis technology -- 2.5 Electrospinning -- 2.6 Vapor deposition methods -- 2.6.1 Chemical vapor deposition -- 2.6.1.1 Atomic layer deposition -- 2.6.2 Physical vapor deposition -- 2.6.2.1 Magnetron sputtering -- 2.6.2.2 Laser pulse deposition -- 2.6.2.3 Molecular beam epitaxy -- 2.6.2.4 Flame spray pyrolysis -- 2.7 Wet impregnation -- 3. Reception and transduction with gas sensors based on SMOX heterostructures -- 3.1 Gas sensing with pristine semiconducting metal oxides -- 3.2 The formation of heterojunctions in heterostructures -- 3.2.1 n-p heterojunctions. , 3.2.2 n-n and p-p heterojunctions -- 3.3 Surface additives and doping -- 3.4 Heterostructures of two materials with comparable amounts -- 3.4.1 Mixtures -- 3.4.2 Core@shell structures -- 3.4.3 Bi- and multilayers -- 3.4.4 Hybrid materials from carbon nanotubes and semiconducting metal oxides -- 4. Conclusion and future perspectives -- References -- 8 - Metal oxides based materials for display devices -- 1. Introduction -- 2. Preparation of phosphor materials -- 2.1 Solid-state reaction route -- 2.2 Sol-gel method -- 2.3 Solvo(hydro)thermal synthesis -- 2.4 Co-precipitation route -- 2.5 Combustion synthesis -- 2.6 Microwave-assisted route -- 2.7 Sonochemical method -- 3. Crystal structure and morphology of phosphor materials -- 4. Metal oxide phosphors -- 5. Different colored phosphors -- 5.1 Red emitting phosphors -- 5.2 Green-emitting phosphors -- 5.3 Blue emitting phosphors -- 5.4 White color phosphors -- 6. Device fabrication -- 7. Conclusions -- References -- 9 - Metal oxide heterostructure-based light-emitting diodes -- 1. Introduction -- 1.1 Fundamentals of light-emitting diode -- 2. Heterostructure of semiconductors -- 3. Design and fabrication of heterojunction LEDs -- 3.1 Substrate materials -- 3.2 Packaging technologies -- 3.3 Types of LED packaging -- 3.3.1 Chip-on-board LED package -- 3.3.2 Wafer-level LED package -- 3.3.3 Chip-on-Flex LED package -- 3.3.4 Modular LED package -- 3.3.5 Flip-chip LED package -- 4. Luminescence dynamics of heterojunction metal oxides for applications in LEDs -- 5. Luminescence of doped metal oxides heterostructures for LED applications -- 5.1 Rare earth ions -- 5.2 Transition metals -- 5.3 Noble metals -- 6. Summary and final remarks -- References -- 10 - Development of metal oxide heterostructures for photovoltaic and solar cell applications -- 1. Introduction -- 2. ZnO-based heterostructures. , 3. TiO2-based heterostructures.
    Additional Edition: Print version: Kumar, Naveen Metal Oxide-Based Heterostructures San Diego : Elsevier,c2022 ISBN 9780323852418
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780323850414?
Did you mean 9780323852081?
Did you mean 9780323852128?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages