UID:
almahu_9949983704902882
Format:
1 online resource (668 pages) :
,
illustrations
ISBN:
9780323903462
,
0323903460
Content:
"Fundamentals of Low Emission Flameless Combustion and Its Applications is a comprehensive reference on the flameless combustion mode and its industrial applications, considering various types of fossil and alternative fuels. Several experimental and numerical accomplishments on the fundamentals of state-of-the-art flameless combustion is presented, working to clarify the environment-friendly aspects of this combustion mode. In this reference, Dr. Hosseini presents the latest progress in the field and highlights the most significant achievements since invention, including the fundamentals of thermodynamics, heat transfer, and chemical kinetics. Moreover, the impacts of the flameless combustion mode on fuel consumption, mitigation, and emission reduction are analyzed. Serving as a go-to source for both industry and academic, Fundamentals of Low Emission Flameless Combustion and Its Applications delivers a solid foundation for today's engineers researching flameless combustion and energy conservation."--
Note:
Intro -- Fundamentals of Low Emission Flameless Combustion and Its Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Fossil fuel crisis and global warming -- 1. Introduction -- 2. Fossil fuels combustion emissions -- 3. Emission reduction in combustion systems -- 4. Conclusion -- References -- Chapter 2: Ultra-lean combustion mode -- 1. Introduction -- 2. Basic terminology and characteristics of ultra-lean combustion -- 2.1. Equivalence ratio -- 3. Experimental and numerical studies on ultra-lean combustion mode -- 3.1. Ultra-lean hydrogen flames -- 3.2. Ultra-lean methane flames -- 3.2.1. Heat-recirculating burners -- 3.2.2. Supported laminar flames -- 3.2.3. Turbulent (swirl-stabilized) flames -- 3.2.4. Internal combustion engines -- 3.3. Ultra-lean dimethyl ether flames -- 3.3.1. Laminar ultra-lean flames of preheated dimethyl ether/air mixtures -- 4. Conclusion -- Acknowledgments -- References -- Chapter 3: Historical background of novel flameless combustion -- 1. Introduction -- 2. Exhaust gas recirculation and flameless combustion -- 2.1. Early investigations in flameless combustion -- 3. Modeling aspects of flameless combustion-A brief history -- 4. Importance of geometry selection in flameless combustion -- 5. Flameless combustion of low graded fuels -- 6. Flameless combustion for gas turbines -- 7. Summary -- References -- Chapter 4: High-temperature air flameless combustion -- 1. Fundamentals of flameless combustion -- 1.1. Basic concepts -- 1.2. Flame characteristics -- 1.3. General requirements for operation parameters -- 1.4. Criteria of flameless combustion -- 1.5. General characteristics -- 2. NO formation mechanisms -- 2.1. Thermal NO -- 2.2. Prompt NO -- 2.3. Fuel NO -- 2.4. NO formation via N2O intermediate mechanism -- 2.5. NO reduction by reburning -- 3. Numerical modeling -- 3.1. Standard EDC model.
,
3.2. Extension of EDC model -- 3.3. New extended EDC model -- 4. Summary -- References -- Chapter 5: Thermodynamic analysis of flameless combustion -- 1. Introduction -- 2. Zero-dimensional modeling of MILD combustion in a WSR -- 2.1. Method of obtaining Tsi and Tex -- 2.2. Identification of MILD combustion regime -- 2.3. Development of Tin-XO2 combustion regime map -- 3. First and second thermodynamic-law analysis of MILD combustion in diffusion flames -- 3.1. Description of mathematical modeling method -- 3.2. Effect of oxidant preheating temperature (Toxi) -- 3.3. Effect of oxidant oxygen concentration (Xo) -- 4. Conclusions -- Acknowledgment -- References -- Chapter 6: Aerodynamics issues and configurations in MILD reactors -- 1. Introduction -- 2. Reactor constraints for MILD combustion -- 3. Externally enhanced MILD reactors -- 4. MILD reactors with internal flows recirculation -- 4.1. Axial flow reactors -- 4.1.1. General background/conceptual map -- 4.1.2. Single reversing (folding) reactor -- 4.1.3. Double reversing (folding) reactor -- 4.1.4. Closed-loop reactor -- 4.2. Transverse flow reactors -- 4.2.1. General background/conceptual map -- 4.2.2. Adjacent inlet/outlet flows -- 4.2.3. Opposite inlet/outlet flows -- 4.2.4. Central inlet/outlet flows -- 4.2.5. Distributed inlet/outlet flows -- 5. Summary and remarks -- References -- Chapter 7: Heat transfer and its influence on MILD combustion -- 1. Introduction -- 2. Methane MILD combustion in a lab-scale furnace -- 2.1. Experimental description -- 2.2. Description of CFD simulation -- 2.2.1. Model description -- 2.2.2. Grid independence check -- 2.2.3. Model validation -- 2.2.4. CFD simulation cases -- 2.3. Comparison between conventional and MILD combustion inside the lab-scale furnace under various Twall -- 2.3.1. Heat transfer behaviors -- 2.3.2. Combustion stability limit.
,
2.3.3. Temperature and oxygen profile -- 2.3.4. CO emission and burnout efficiency -- 2.3.5. Chemical reaction rate -- 3. Methane MILD combustion in a nonadiabatic perfectly-stirred reactor (PSR) -- 3.1. Combustion regime classification in PSR -- 3.2. Effect of heat loss on combustion regime evolution under different XO2 -- 3.3. Effect of heat loss on combustion regime evolution under different Tin -- 3.4. Effect of diluent types on combustion regime recognition under nonadiabatic conditions -- 4. Conclusions -- Acknowledgment -- References -- Chapter 8: Direct numerical simulations of flameless combustion -- 1. Introduction -- 2. DNS of MILD combustion -- 2.1. DNS of the autoigniting mixing layer -- 2.2. DNS with internal EGR -- 3. Physics of MILD combustion -- 3.1. Inception of MILD combustion: Jet in hot coflow configuration -- 3.2. Inception of MILD combustion: Role of chemical radicals -- 3.3. Ignition and deflagration -- 3.3.1. Combustion mode as balance in the transport equation -- 3.3.2. Combustion mode from chemical explosive mode analysis -- 3.3.3. Summary -- 4. Modeling insights: A priori analysis from DNS -- 4.1. Presumed PDF approach -- 4.2. Partially stirred reactor approach -- 4.3. Flamelet-generated manifold -- 4.4. Discussion -- 5. Conclusions and outlook -- References -- Chapter 9: Large eddy simulation of MILD combustion -- 1. Introduction -- 2. Turbulence-chemistry interaction modeling -- 2.1. Tabulated chemistry models -- 2.1.1. Three-stream FPV model -- 2.1.2. Diluted FPV model -- 2.2. Conditional source-term estimation -- 2.3. Reactor-based models -- 2.3.1. EDC model -- 2.3.2. Partially stirred reactor -- 2.3.3. Implicit combustion closures for LES -- QLFR model -- LFR model -- Implicit models features -- 2.4. Transported probability density function (TPDF)-based models -- 2.4.1. Lagrangian probability density function method.
,
2.4.2. Multienvironment Eulerian PDF method -- 3. Discussion -- 3.1. Open flame burners -- 3.1.1. Adelaide jet-in-hot-coflow -- 3.1.2. DJHC burner -- Conclusion on the jet-in-hot-coflow burners -- 3.2. Confined flame burners -- 3.2.1. Reverse-flow combustion chamber -- 3.2.2. Cylindrical confined combustor -- 4. Best-practice guidelines for LES of MILD combustion -- 4.1. Boundary conditions -- 4.2. Computational intensity -- 4.3. Postprocessing -- 4.4. DNS data for LES combustion model assessment -- 5. Conclusions -- Acknowledgments -- References -- Chapter 10: Coflow and counterflow burners -- 1. Coflow burners -- 1.1. Free jets coflow burners used in experimental and numerical studies on flameless combustion -- 1.1.1. The jet in hot coflow burner JHC (Dally, 2002) -- Experimental works based on the JHC burner -- Numerical works based on the JHC burner -- 1.1.2. Vitiated coflow burner VCB (Cabra/Dibble, 2000) -- Experimental works based on the VCB burner -- Numerical works based on the VCB burner -- 1.1.3. Delft jet in hot coflow burner DJHC (Oldenhof, 2010) -- Experimental works based on the DJHC burner -- Numerical works based on the DJHC burner -- 1.1.4. Laminar jet in hot coflow LJHC (Sepman, 2012) -- 1.1.5. Distributed and flameless combustion burner DFCB (Duwig, 2012) -- 1.2 RANS-based equations for coflow burners computation in the FC regime -- 1.3. Confined jets coflow burners used in experimental and numerical studies on flameless combustion -- 1.3.1. DLR burner (Meier, 2011) -- 1.3.2. Lisbon Burner 1 (Veríssimo, 2011) -- 1.3.3. Lisbon burner 2 (Rebola, 2013) -- 1.3.4. Delft burner (Huang, 2017) -- 1.3.5. Jinan burner (Huang, 2020) -- 2. Counterflow burners -- 2.1. Counterflow burners used in experimental studies on flameless combustion -- 2.1.1. Akita burner (Maruta, 2000) -- 2.1.2. London burner (Goh, 2013).
,
2.1.3. Tohoku burner (Xing Li, 2014) -- 2.2. Counterflow burners used in numerical studies on flameless combustion -- 2.3. Mathematical formulation for the counterflow (opposed jets) burners -- 3. Conclusion -- References -- Chapter 11: Numerical investigation of the flameless combustion mode of solid fuels -- 1. Introduction -- 2. Conversion of single solid fuel particle during combustion -- 2.1. Particle motion and energy balance -- 2.2. Heating and drying -- 2.3. Devolatilization -- 2.4. Char oxidation -- 3. Turbulence-chemistry interaction -- 4. Modeling of NOX formation and destruction -- 5. Summary -- References -- Chapter 12: Chemical kinetics of flameless combustion -- 1. Flameless combustion paradigm -- 2. Chemical kinetics of MILD combustion -- 2.1. Fundamentals of chemical kinetics -- 2.2. Classification of kinetic models -- 3. Global reaction mechanisms for MILD combustion -- 4. Detailed reaction mechanisms for MILD combustion -- 5. Effect of operating conditions: Kinetics and thermal effects -- 5.1. Kinetics -- 5.1.1. CO2 chemical effects -- 5.1.2. H2O chemical effects -- 5.1.3. Third-body efficiency -- 5.2. Thermal effects -- 5.2.1. Heat capacity -- 5.2.2. Combustion temperature -- 6. Concluding remarks -- Acknowledgments -- References -- Chapter 13: Chemistry of nitrogen oxides (NOx) formation in flameless combustion -- 1. Tackling NOx emissions via flameless combustion -- 2. NOx formation: Mechanisms and chemical kinetics -- 2.1. Thermal NOx -- 2.1.1. N2O route -- 2.1.2. NNH route -- 2.2. Prompt NOx -- 2.3. Fuel NOx -- 2.3.1. Cyanides -- 2.3.2. NH3 -- 3. Chemical effects of NOx at low temperature -- 3.1. CH4/NH3 interactions -- 4. The fate of fuel-N in the flameless regime -- 4.1. HCN -- 4.2. NH3 -- 4.3. Pyrrole -- 5. Conclusions and outlooks -- References.
,
Chapter 14: Heat transfer simulation in the moderate and intensive low-oxygen dilution combustion.
Additional Edition:
Print version: Hosseini, Seyed Ehsan Fundamentals of Low Emission Flameless Combustion and Its Applications San Diego : Elsevier Science & Technology,c2022 ISBN 9780323852449
Language:
English
Bookmarklink