UID:
almahu_9949983832502882
Umfang:
1 online resource (426 pages)
ISBN:
9780323852623
,
0323852629
Inhalt:
"Cyberphysical Infrastructures in Power Systems: Architectures and Vulnerabilities provides an extensive overview of CPS concepts and infrastructures in power systems with a focus on the current state-of-the-art research in this field. Detailed classifications are pursued highlighting existing solutions, problems, and developments in this area."--
Anmerkung:
Front Cover -- Cyberphysical Infrastructures in Power Systems -- Copyright -- Contents -- About the authors -- Preface -- Acknowledgments -- Part 1 Background -- 1 Overview -- 1.1 Cyberphysical security modeling systems (CPS) -- 1.1.1 Introduction -- 1.1.2 Wide-area monitoring, protection and control systems -- 1.1.3 Wide-area protection -- 1.1.4 Phasor measurement units -- 1.2 Cyberattack taxonomy -- 1.2.1 Cyberattack classification -- 1.2.2 Coordinated attacks on WAMPAC -- 1.2.3 Cyberphysical security using game-theoretic approach -- 1.2.4 Cyberlayer risk assessment -- 1.2.5 Attack modeling -- 1.2.6 Game formulation and solution strategies -- 1.3 Challenges in cyberphysical power systems -- 1.3.1 Signal sampling -- 1.3.2 Signal quantization -- 1.3.3 Communication delay -- 1.3.4 Packet dropouts -- 1.3.5 Medium access constraints -- 1.3.6 Channel fading -- 1.3.6.1 Information-theory based approach -- 1.3.6.2 Stochastic system approach -- 1.3.7 Power constraints -- 1.3.7.1 Reducing the transmission rate -- Deterministic case -- Stochastic case -- Event-based case -- 1.3.7.2 Packet size reduction -- Deterministic case -- Stochastic case -- 1.4 Secure industrial control systems -- 1.4.1 Introduction -- 1.4.2 Progress of SICS -- 1.4.3 Major security objectives -- 1.5 Game-theoretic methods -- 1.5.1 Robustness issue -- 1.5.2 Resilient control design -- 1.5.3 Hierarchical systems -- 1.5.4 Physical layer control system problem -- 1.6 Notes -- References -- 2 Smart grids: control and cybersecurity -- 2.1 A view of networked microgrids -- 2.1.1 Introduction -- 2.1.2 Types of networked microgrids -- 2.1.3 Star-connected NMG -- 2.1.4 Ring-connected NMG -- 2.1.5 Mesh-connected NMG -- 2.1.6 Control approaches in NMGs -- 2.2 Cyberattack protection and control of microgrids -- 2.2.1 Model of microgrid system -- 2.2.2 Observation model and cyberattack.
,
2.2.3 Cyberattack minimization in smart grids -- 2.2.4 Stabilizing feedback controller -- 2.2.5 Simulation results I -- 2.3 Smart grid cybersecurity analysis -- 2.3.1 Introduction -- 2.3.2 Power network model and state estimation -- 2.3.2.1 Unobservable data attack and security index -- 2.3.2.2 Measurement set robustness analysis -- 2.3.3 Attack construction problem -- 2.3.3.1 l1 relaxation problem (2.30) is a cardinality minimization problem -- 2.3.4 Main result -- 2.4 Main attributes -- 2.4.1 Rationale of the no injection assumption -- 2.4.2 Relationship with minimum cut based results -- 2.4.3 Relationship with compressed sensing results -- 2.4.4 Definitions -- 2.4.5 The equivalence between two relations -- 2.4.6 Proof of proposition -- 2.4.7 Simulation results II -- 2.5 Two-area power system -- 2.5.1 Introduction -- 2.5.2 Simulation results III -- 2.6 Notes -- References -- Part 2 Control, estimation, and fault detection -- 3 Safe control methods -- 3.1 Introduction -- 3.2 State feedback controller -- 3.2.1 Threat model -- 3.2.2 Design of the state feedback controller -- 3.3 Observer-based controller -- 3.3.1 Design of a state feedback controller -- 3.3.2 Simulation results -- 3.4 Performance-degradation issues -- 3.4.1 Preliminaries -- 3.4.2 System description -- 3.4.3 X2 failure detector -- 3.4.4 Threat model -- 3.4.5 Recursive version of Rk -- 3.4.6 Ellipsoidal approximation of Rk -- 3.4.7 Simulation results -- 3.5 Decentralized secure control -- 3.5.1 Problem statement -- 3.5.2 Design results -- 3.5.3 Application to a four-area power system -- 3.6 Notes -- References -- 4 Event-triggering control of cyberphysical power systems -- 4.1 Introduction -- 4.2 Problem formulation and the control scheme -- 4.2.1 The event triggering mechanism -- 4.2.2 The attack model -- 4.2.3 The observer-based control scheme -- 4.3 Design results.
,
4.4 Illustrative examples -- 4.4.1 Two-area power systems -- 4.4.2 A single machine connected to an infinite-bus -- 4.5 Conclusions -- Appendix: proof of Theorem 14 -- References -- 5 Wide-area monitoring and estimation systems -- 5.1 Introduction -- 5.2 WAMS applications and state estimation -- 5.2.1 Three possible states -- 5.2.2 Basic paradigms of state estimation -- 5.2.3 State representation of a power grid -- 5.2.4 Properties of probability vector -- 5.2.5 Observation model -- 5.2.6 Correlation of noise -- 5.2.7 Function of frequency oscillation state -- 5.2.8 Attack vector -- 5.3 Median regression function-based approach -- 5.3.1 Initial regression analysis using the mapping function -- 5.3.2 Additional geometric properties -- 5.3.3 Frequency oscillation state estimation -- 5.3.4 Interacting multiple model (IMM)-based fusion -- 5.3.5 Residual generation using error matrix -- 5.3.6 Residual evaluation using cross-spectral density function -- 5.4 Implementation and evaluation results -- 5.4.1 System disturbances -- 5.4.2 Deliberate data-injection scenarios -- 5.4.3 Aim of a hacker -- 5.4.4 Performance evaluation using regression methods -- 5.4.5 Estimation comparison with track fusion -- 5.4.6 MSE-based estimation comparison -- 5.5 Notes -- References -- Part 3 Power systems' architectures -- 6 Future grid architectures -- 6.1 Communication architectures in smart grids -- 6.1.1 Introduction -- 6.1.2 A framework of the next-generation power grid -- 6.1.3 Network architecture -- 6.1.4 Wide-area networks -- 6.1.5 Field-area networks -- 6.1.6 Home-area networks -- 6.1.7 Delay pattern -- 6.2 Wide-area monitoring control of smart grids -- 6.2.1 Power system dynamic model -- 6.2.2 Sensors and actuators -- 6.2.3 Control design -- 6.2.4 Simulation results -- 6.3 Wide-area case studies -- 6.3.1 Monitoring system case study.
,
6.3.2 Monitoring and control systems case study -- 6.4 Notes -- References -- 7 Mature industrial functions -- 7.1 Secure remote state estimation -- 7.1.1 Introduction -- 7.1.2 Problem formulation -- 7.1.2.1 System model -- 7.1.2.2 Plant model -- 7.1.2.3 The χ2 detector -- 7.1.2.4 Linear FDI attack -- 7.1.3 Secure modules for data transmission -- 7.1.3.1 Structure of secure modules for data transmission -- 7.1.3.2 Feasibility analysis -- 7.1.4 Detection and performance analysis in various attack scenarios -- 7.1.4.1 Scenario I: no information leakage -- 7.1.4.2 Scenario II: partial information leakage -- 7.1.4.3 Scenario III: information leakage -- 7.1.5 Extension to detect other attacks -- 7.1.5.1 False-data injection attack -- 7.1.5.2 Replay attack -- 7.1.6 Proofs of the lemmas and theorems -- Appendix A -- A.1. Proof of Lemma 6 -- Appendix B -- Proof of Lemma 7 -- Appendix C -- Proof of Lemma 9 -- Appendix D -- Appendix E -- 7.1.7 Simulation results -- 7.1.7.1 Simulation result in Scenario I -- 7.1.7.2 Simulation result in Scenario II -- 7.1.7.3 Simulation result in Scenario III -- 7.1.7.4 Extension to detect the replay attack -- 7.2 Notes -- References -- 8 Secure filtering in power systems -- 8.1 Introduction -- 8.2 Problem description -- 8.3 Main results -- 8.4 Simulation results -- 8.5 Notes -- References -- 9 Basic mathematical tools -- 9.1 Finite-dimensional spaces -- 9.1.1 Vector spaces -- 9.1.2 Norms of vectors -- Induced norms of matrices -- 9.1.3 Some basic topology -- 9.1.4 Convex sets -- 9.1.5 Continuous functions -- 9.1.6 Function norms -- 9.1.7 Mean value theorem -- 9.1.8 Implicit function theorem -- 9.2 Matrix theory -- 9.2.1 Fundamental subspaces -- 9.2.2 Change of basis and invariance -- 9.2.3 Calculus of vector-matrix functions of a scalar -- 9.2.4 Derivatives of vector-matrix products.
,
9.2.5 Positive definite and positive semidefinite matrices -- 9.2.6 Matrix ellipsoid -- 9.2.7 Power of a square matrix -- 9.2.8 Exponential of a square matrix -- 9.2.9 Eigenvalues and eigenvectors of a square matrix -- 9.2.10 The Cayley-Hamiltonian theorem -- 9.2.11 Trace properties -- 9.2.12 Kronecker product and vec -- 9.2.13 Partitioned matrices -- 9.2.14 The matrix inversion lemma -- 9.2.15 Strengthened version of the lemma of Lyapunov -- 9.2.16 The singular value decomposition -- 9.3 Some bounding inequalities -- 9.3.1 Bounding inequality A -- 9.3.2 Bounding inequality B -- 9.3.3 Bounding inequality C -- 9.3.4 Bounding inequality D -- 9.3.5 Young's inequality -- 9.4 Gronwall-Bellman inequality -- 9.5 Schur complements -- 9.6 Some useful lemmas -- 9.7 Fundamental stability theorems -- 9.7.1 Lyapunov-Razumikhin theorem -- 9.7.2 Lyapunov-Krasovskii theorem -- 9.7.3 Halany theorem -- 9.7.4 Types of continuous Lyapunov-Krasovskii functionals -- 9.7.5 Some discrete Lyapunov-Krasovskii functionals -- 9.8 Elements of algebraic graphs -- 9.8.1 Graph theory -- 9.8.2 Undirected graph -- 9.8.3 Main graphs -- 9.8.4 Graph operations -- 9.8.5 Basic properties -- 9.8.6 Connectivity properties of digraphs -- 9.8.7 Properties of adjacency matrix -- 9.8.8 Laplacian spectrum of graphs -- 9.9 Linear matrix inequalities -- 9.9.1 Basics -- 9.9.2 Some standard problems -- 9.9.3 The S-procedure -- 9.10 Some formulas on matrix inverses -- 9.10.1 Inverse of block matrices -- 9.10.2 The matrix inversion lemma -- 9.11 Notes -- References -- Index -- Back Cover.
Weitere Ausg.:
ISBN 9780323852616
Weitere Ausg.:
ISBN 0323852610
Sprache:
Englisch
Bookmarklink