UID:
almahu_9949983758302882
Umfang:
1 online resource (434 pages)
ISBN:
9780323852722
,
0323852726
Inhalt:
Solar Receivers for Thermal Power Generation: Fundamentals and Advanced Concepts looks at different Concentrated Solar Power (CSP) systems, their varying components, and the modeling and optimization of solar receivers. The book combines the detailed theory of receivers, all physical concepts in the process of converting solar radiation into electricity in CSP systems, and the main components of CSP systems, including solar concentrators, thermal receivers and power blocks. Main properties and working principles are addressed, along with the principles of solar resources and energy output of CSP systems and solar radiation.
Anmerkung:
Front Cover -- Solar Receivers for Thermal Power Generation -- Solar Receivers for Thermal Power Generation: Fundamentals and Advanced Concepts -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 - Introduction to concentrating solar power -- 1.1 Introduction -- 1.1.1 Sustainable production of electricity -- 1.1.2 Photovoltaic technology -- 1.1.3 Concentrating solar power -- 1.2 Concentrator -- 1.2.1 Classification of concentrators -- 1.2.2 Concentration ratio -- Example 1.1 -- Solution -- 1.3 Solar receiver -- 1.3.1 Energy balance of solar receiver -- 1.3.2 Heat classification and operation of solar receivers -- 1.4 Enhancement of capacity factor -- 1.4.1 Thermal storage -- 1.4.2 Backup heating -- 1.5 Power block -- 1.5.1 Carnot cycle -- Example 1.2 -- Solution -- 1.5.2 Rankine cycle -- 1.5.3 Gas turbine -- 1.5.4 Stirling cycle -- 1.5.5 Kalina cycle -- 1.6 Overall system efficiency -- 1.6.1 Optical efficiency -- 1.6.2 Efficiency of solar receivers -- Example 1.3 -- Solution -- 1.6.4 Efficiency of electric generators -- 1.6.5 System efficiency -- Example 1.4 -- Solution -- 1.7 Common types of concentrating solar power technology -- 1.7.1 Parabolic trough concentrator -- 1.7.2 Linear Fresnel reflector -- 1.7.3 Solar tower -- 1.7.4 Parabolic dish concentrator -- Nomenclature -- References -- 2 - Solar radiation resource -- 2.1 Introduction -- 2.2 Source of solar radiation -- 2.2.1 The sun -- 2.2.2 Solar constant -- 2.3 Components of solar radiation -- 2.3.1 Beam and diffuse radiation -- 2.3.2 Direct normal irradiance -- 2.4 Position of the sun and direction of beam radiation -- Example 2.1 -- Solution -- 2.5 Extraterrestrial radiation and solar radiation on inclined surfaces -- 2.6 Available solar radiation on the earth's surface -- 2.7 Attenuation of solar radiation when incident on opaque and transparent surfaces -- Example 2.2.
,
Solution -- Nomenclature -- References -- 3 - Classification of solar receivers -- 3.1 Introduction -- 3.2 Geometric design -- 3.2.1 Tubular receivers -- 3.2.2 Volumetric receivers -- 3.2.3 Microchannels -- 3.2.4 Linear and point focus receivers -- 3.2.5 External and cavity solar receivers -- 3.3 Adaptable heat transfer media -- 3.3.1 Gas solar receivers -- 3.3.2 Liquid solar receivers -- 3.3.3 Particle solar receivers -- 3.3.3.1 Free-falling particle receivers -- 3.3.3.2 Obstructed particle receivers -- 3.3.3.3 Rotary/centrifugal receivers -- 3.3.3.4 Confined fluidized bed receivers -- 3.3.3.5 Gravity-driven particle flow through enclosures -- References -- 4 - Optical properties of materials for solar receivers -- 4.1 Introduction -- 4.2 Transmission of radiation through transparent materials -- 4.2.1 Reflection and absorption of beam radiation -- Example 4.1 -- Solution -- Example 4.2 -- Solution -- 4.2.2 Optical properties of transparent covers -- Example 4.3 -- Solution -- 4.2.3 Transmission of diffuse radiation -- 4.2.4 Transmittance-absorptance product -- 4.2.5 Spectral dependence of transmittance -- 4.2.6 Transparent selective surface -- 4.3 Opaque materials -- 4.3.1 Absorptance and emittance -- 4.3.2 Reflectance -- 4.3.3 Functional relationships among absorptance, emittance, and reflectance -- 4.3.4 Selective absorber surfaces -- 4.3.5 Computation of absorptance and emittance -- Example 4.4 -- Solution -- 4.3.6 Measurement of surface radiation -- 4.3.7 Angular dependence of absorptance of solar radiation -- 4.3.8 Absorptance of external and cavity solar receivers -- Nomenclature -- References -- 5 - Characteristics of heat transfer media -- 5.1 Introduction -- 5.1.1 Required characteristics of heat transfer fluids -- 5.1.1.1 Working temperature range and thermal stability -- 5.1.1.2 Heat transfer properties -- 5.1.1.3 Working pressure.
,
5.1.1.4 Operational aspects -- 5.1.1.5 Affordability of materials -- 5.1.2 Wall-to-fluid coefficient of convective heat transfer -- Example 5.1 -- Solution -- 5.2 Conventional heat transfer media -- 5.2.1 Water/steam -- 5.2.2 Gases -- 5.2.2.1 Air -- 5.2.2.2 Carbon dioxide -- 5.2.2.3 Helium -- 5.2.2.4 Hydrogen -- 5.2.3 Molten salts -- 5.2.4 Thermal oil -- 5.3 Advanced heat transfer media -- 5.3.1 Supercritical cycles -- 5.3.1.1 Supercritical steam -- 5.3.1.2 Supercritical carbon dioxide -- 5.3.2 Liquid metals -- 5.3.2.1 Liquid sodium -- 5.3.2.2 Lead-bismuth eutectic -- 5.3.2.3 Gallium -- 5.3.3 Nanofluids -- 5.3.3.1 Preparation of nanofluids -- 5.3.3.2 Application of nanofluids in solar receivers -- 5.3.4 Suspended solid particles -- Example 5.2 -- Solution -- Nomenclature -- References -- 6 - Concepts of thermal energy storage and solar receivers -- 6.1 Introduction -- 6.1.1 Classification of thermal energy storage concepts -- 6.1.2 Characteristics of thermal energy storage media and systems -- 6.1.2.1 Thermophysical properties -- 6.1.2.2 Economic and environmental characteristics -- 6.1.2.3 Safety and health hazard -- 6.1.2.4 Summary of required characteristics of thermal energy storage materials -- 6.1.3 Benefits of integrating concentrating solar power with thermal energy storage -- 6.2 Sensible thermal energy storage concepts -- 6.2.1 Liquid thermal energy storage -- Example 6.1 -- Solution -- 6.2.1.1 Low-temperature water systems -- 6.2.1.2 High-temperature water systems -- Example 6.2 -- Solution -- 6.2.1.3 Thermal oil systems -- 6.2.1.4 Molten salt systems -- 6.2.1.5 Liquid sodium -- 6.2.2 Sensible heat storage in solids -- 6.2.2.1 Materials -- 6.2.2.2 Heat transfer concepts -- 6.2.2.3 Packed bed storage system -- 6.2.2.4 High temperature indirect contact concrete storage systems -- 6.3 Latent thermal energy storage -- 6.3.1 Materials.
,
6.3.1.1 Paraffins -- 6.3.1.2 Salt hydrates -- 6.3.1.3 Anhydrous salts -- 6.3.2 Heat transfer concepts -- 6.4 High-temperature latent heat storage applications -- 6.5 Thermochemical energy storage -- 6.5.1 Heat of chemical reactions -- 6.5.2 Heat of sorption -- 6.6 Configurations of concentrating solar power plants with thermal storage -- Nomenclature -- References -- 7 - Thermodynamics of solar receivers -- 7.1 Introduction -- 7.2 Laws of thermodynamics -- 7.2.1 Zeroth law -- 7.2.2 First law of thermodynamics -- 7.2.3 Second law of thermodynamics -- 7.2.4 Third law of thermodynamics -- 7.3 Energy analysis -- 7.3.1 Steady flow systems -- 7.3.1.1 Mass conservation -- Example 7.1 -- Solution -- 7.3.1.2 Flow work and energy of a moving fluid -- 7.3.2 Transient flow systems -- 7.3.2.1 Mass conservation -- 7.3.2.2 Energy balance -- 7.4 Entropy of a system -- 7.4.1 Clausius inequality -- 7.4.2 Entropy generation and increase -- 7.4.3 Entropy of pure substances -- Example 7.2 -- Solution -- 7.4.4 Isentropic processes -- 7.5 Exergy of solar receivers -- 7.5.1 A system and its surroundings -- 7.5.2 Exergy analysis -- 7.5.2.1 Exergy of solar radiation -- 7.5.2.2 Exergy of heat flows -- 7.5.2.3 Exergy balance and efficiency -- Example 7.3 -- Solution -- Nomenclature -- References -- 8 - Hydrodynamics of solar receivers -- 8.1 Introduction -- 8.2 Fluid properties -- 8.2.1 Density -- Example 8.1 -- Solution -- 8.2.2 Viscosity -- 8.2.3 Newtonian and non-Newtonian fluids -- 8.2.3.1 Newtonian fluids -- 8.2.3.2 Non-Newtonian fluids -- 8.3 Hydrodynamic equations -- 8.3.1 Equations for viscous flow -- 8.3.1.1 Continuity equation -- 8.3.1.2 Momentum equation -- 8.3.1.3 Energy equation -- 8.3.1.4 Boussinesq approximation -- 8.3.2 Equations for inviscid flow -- 8.3.2.1 Continuity equation -- 8.3.2.2 Momentum equations -- 8.3.2.3 Energy equation.
,
8.3.3 Governing equations of two-phase flows -- 8.3.3.1 Flow of suspended solids -- 8.3.3.2 Flow through porous media -- 8.3.3.3 Liquid-gas flows -- 8.4 Characteristics of fluid flows -- 8.4.1 Laminar flows -- 8.4.2 Turbulent flows -- 8.4.3 Internal flows -- 8.5 Flow stability -- 8.5.1 Method of normal modes for stability analysis -- 8.5.2 Instability in parallel flows -- 8.5.2.1 Stability of viscous parallel flows -- 8.5.2.2 Stability of inviscid parallel flows -- 8.5.3 Thermal instability -- 8.5.4 Centrifugal instability -- 8.5.4.1 Criterion for inviscid flow -- 8.5.4.2 Criterion for viscous flow -- Example 8.2 -- Solution -- 8.6 Pressure loss -- 8.6.1 Friction losses -- 8.6.2 Dynamic losses -- 8.6.2.1 Local loss coefficients -- 8.6.2.2 Darcy-Weisbach equation -- Nomeclature -- References -- 9 - Thermomechanical considerations in solar receivers -- 9.1 Introduction -- 9.2 Characteristics of structural materials -- 9.2.1 Operational temperature range and thermal stability -- 9.2.2 Thermophysical properties -- 9.2.3 Flow pressure -- 9.2.4 Operational aspects -- 9.2.5 Availability and affordability of materials -- 9.3 Major structural elements of solar receivers -- 9.3.1 Surface receivers -- 9.3.2 Volumetric receivers -- 9.3.2.1 Conventional volumetric receivers -- 9.3.2.2 Advanced volumetric receivers -- 9.4 Temperature gradients -- 9.4.1 Temperature gradients in surface receivers -- 9.4.2 Temperature gradients in volumetric receivers -- 9.5 Thermomechanical stresses -- 9.5.1 Thermal stress -- 9.5.2 Mechanical stress -- 9.6 Thermomechanical strains -- 9.6.1 Thermal strain -- 9.6.2 Mechanical strain -- 9.6.2.1 Material strength -- 9.6.2.2 Hooke's law in two and three dimensions -- Example 9.1 -- 9.6.3 Relationships between thermomechanical stress and strain -- 9.6.4 Thermal stress index -- 9.6.5 Thermal shock and fatigue -- Example 9.2.
,
9.7 Thermomechanical properties of materials.
Weitere Ausg.:
Print version: Madhlopa, Amos Solar Receivers for Thermal Power Generation San Diego : Elsevier Science & Technology,c2022 ISBN 9780323852715
Sprache:
Englisch
Bookmarklink