UID:
almahu_9949984696702882
Umfang:
1 online resource (550 pages)
ISBN:
9780323902045
,
0323902049
Serie:
Emerging Methodologies and Applications in Modelling, Identification and Control
Inhalt:
"Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems."--
Anmerkung:
Includes index.
,
Front Cover -- Fractional-Order Design: Devices, Circuits, and Systems -- Copyright -- Contents -- List of contributors -- 1 MOS realizations of fractional-order elements -- 1.1 Introduction -- 1.2 CPE/FI emulation techniques -- 1.2.1 CPE/FI emulation using electronically controlled RC networks -- 1.2.2 CPE/FI emulation using fractional-order integrators/differentiators -- 1.3 Practical aspects -- 1.3.1 Time constants and scaling factors spread reduction -- 1.3.2 Reduction of the control terminals of the system -- 1.3.3 Enhancement of the order range of the emulator -- 1.4 Conclusions and discussion -- Acknowledgment -- References -- 2 A chaotic system with equilibria located on a line and its fractional-order form -- 2.1 Introduction -- 2.2 Model of the proposed flow and its dynamics -- 2.3 Fractional-order form -- 2.4 Circuit implementation -- 2.5 FPGA implementation of the chaotic system -- 2.6 Conclusion -- References -- 3 Approximation of fractional-order elements for sinusoidal oscillators -- 3.1 Introduction -- 3.2 R-C network-based FDs -- 3.3 FDs for sinusoidal oscillators -- 3.3.1 Impedance equalization-based FDs -- 3.3.2 Admittance equalization-based FDs -- 3.4 Performance analysis -- 3.4.1 Stability analysis -- 3.4.2 Sensitivity analysis using Monte Carlo simulation -- 3.4.3 PSpice simulation and FoM calculation -- 3.5 Conclusion and scope of future research -- References -- 4 Synchronization between fractional chaotic maps with different dimensions -- 4.1 Introduction -- 4.2 Preliminaries -- 4.3 Combined synchronization of 2D fractional maps -- 4.3.1 Master system and slave systems -- 4.3.2 Combined scheme -- 4.4 Combined synchronization of 3D fractional maps -- 4.4.1 Master system and slave systems -- 4.4.2 Combined scheme -- 4.5 Concluding remarks and future works -- Acknowledgments -- References.
,
5 Stabilization of different dimensional fractional chaotic maps -- 5.1 Introduction -- 5.2 Basic tools -- 5.2.1 Caputo delta difference operator and stability -- 5.2.2 Caputo h-difference operator and stability -- 5.3 Stabilization of 2D fractional maps -- 5.4 Stabilization of 3D fractional maps -- 5.5 Summary and future works -- Acknowledgments -- References -- 6 Observability of speed DC motor with self-tuning fuzzy-fractional-order controller -- 6.1 Introduction -- 6.2 Mathematical model of DC motor -- 6.3 Stability of speed estimation -- 6.4 Proposed speed controller -- 6.4.1 Literature review -- 6.4.1.1 Riemann-Liouville fractional difference -- 6.4.1.2 Caputo fractional difference -- 6.4.1.3 Grunwald-Letnikov fractional difference -- 6.4.2 Fractional PID controller -- 6.4.3 Fractional-order PI controller -- 6.4.4 Self-tuning PI fractional-order controller with fuzzy logic -- 6.5 Results and discussion -- 6.5.1 Test 1 -- 6.5.2 Test 2 -- 6.5.3 Test 3 -- 6.5.4 Test 4 -- 6.6 Conclusions -- References -- 7 Chaos control and fractional inverse matrix projective difference synchronization on parallel chaotic systems with application -- 7.1 Introduction -- 7.2 Preliminaries -- 7.2.1 Definition -- 7.2.2 Stability criterion -- 7.3 The fractional inverse matrix projective difference synchronization -- 7.3.1 Problem formulation -- 7.3.2 System description -- 7.3.3 Simulations and discussions -- 7.3.4 Comparison with published literature -- 7.3.5 Chaos control about the stagnation points in the presence of uncertainties and disturbances -- 7.4 Illustration in secure communication -- 7.5 Conclusions -- References -- 8 Aggregation of chaotic signal with proportional fractional derivative execution in communication and circuit simulation -- 8.1 Introduction -- 8.2 Fractional-order chaotic systems and their properties.
,
8.2.1 Lyapunov spectrum and Kaplan-Yorke dimension -- 8.2.2 Dissipativity -- 8.3 Analog circuit imitation -- 8.4 Security analysis -- 8.5 Conclusion -- References -- 9 CNT-based fractors in all four quadrants: design, simulation, and practical applications -- 9.1 Introduction -- 9.2 Fractor: definitions and state-of-the-art -- 9.2.1 FOE realization: a brief survey -- 9.3 A wide-CPZ, long-life, packaged CNT fractor -- 9.3.1 Description of the CNT fractor -- 9.3.2 Process of fabrication -- 9.3.3 Electrical characterization -- 9.3.4 Variation of FO parameters with time -- 9.3.5 Origin of the wide CP nature in CNT fractors -- 9.4 Fractors with desired specifications -- 9.4.1 An RC ladder network with Foster-I topology -- 9.4.2 Simulation of FO immittances with RC ladder -- 9.4.3 Change in FO parameters in CNT fractor -- 9.4.4 Comparison between two different fractor design techniques -- 9.5 Four-quadrant FO immittances using CNT fractors -- 9.5.1 Design of Type I fractors -- 9.5.2 Design of Type II fractors -- 9.5.3 Design of Type III fractors -- 9.5.4 Tunability of fractors -- 9.6 Application of four-quadrant CNT fractors -- 9.6.1 Design of a high-Q factor FO resonator -- 9.6.2 Hardware realization and practical tuning -- 9.7 Conclusion -- 9.A MATLAB program to determine RC ladder parameters for five FO specifications -- Acknowledgments -- References -- 10 Fractional-order systems in biological applications: estimating causal relations in a system with inner connectivity using fractional moments -- 10.1 Introduction -- 10.2 Related work -- 10.3 Fractional moments and fractional cumulants -- 10.4 Hindmarsh-Rose model -- 10.5 Estimating causal relations -- 10.5.1 Complex cumulants -- 10.5.2 Granger causality -- 10.6 Causal direction pattern recognition -- 10.6.1 Clustering -- 10.6.2 Convolutional neural network -- 10.7 Discussion -- 10.8 Conclusion.
,
References -- 11 Unitary fractional-order derivative operators for quantum computation -- 11.1 Introduction -- 11.2 A brief survey on geometric phase concepts in quantum computation -- 11.3 Methodology -- 11.3.1 Fractional calculus preliminaries -- 11.3.2 Unitary fractional-order derivatives and phasor descriptions -- 11.3.3 Control of multiqubit quantum interference circuits by unitary fractional-order derivatives -- 11.4 Some quantum computation implications for unitary fractional-order derivative operators -- 11.4.1 Modeling of quantum interference computation modes -- 11.4.2 Design of a measurement probability distribution via a genetic algorithm -- 11.5 Discussion and conclusions -- 11.A -- References -- 12 Analysis and realization of fractional step filters of order (1+α) -- 12.1 Introduction -- 12.2 Analysis of fractional step filters -- 12.2.1 First method -- 12.2.1.1 Fractional step low-pass filter -- 12.2.1.2 Fractional step high-pass filter -- 12.2.1.3 Fractional step band-pass filter -- 12.2.1.4 Fractional step all-pass filter -- 12.2.1.5 Fractional step band-stop filter -- 12.2.2 Second method -- 12.2.2.1 Fractional step low-pass filter -- 12.2.2.2 Fractional step high-pass filter -- 12.2.2.3 Fractional step band-pass filter -- 12.2.2.4 Fractional step all-pass filter -- 12.2.2.5 Fractional step band-stop filter -- 12.3 Numerical analysis and simulations of FSFs of order (1+α) -- 12.3.1 Circuit simulations based on Method I -- 12.3.2 Circuit simulations based on Method II -- 12.4 Stability -- 12.5 Sensitivity analysis -- 12.5.1 Sensitivity analysis of Method I -- 12.5.2 Sensitivity analysis of Method II -- 12.5.3 Monte Carlo simulations -- 12.6 Conclusion -- References -- 13 Fractional-order identification and synthesis of equivalent circuit for electrochemical system based on pulse voltammetry -- 13.1 Introduction.
,
13.2 Experimental setup -- 13.3 Fractional-order models -- 13.3.1 Fractional-order transfer function -- 13.3.2 Fractional-order circuit elements -- 13.4 Identification of fractional-order transfer function -- 13.4.1 Structure of the proposed fractional-order transfer function -- 13.4.2 Parameter estimation -- 13.4.3 Results: performance evaluation of the identified FOTF -- 13.5 Proposed circuit with fractional-order elements -- 13.5.1 Network synthesis for fractional-order circuit -- 13.5.2 Analysis with fractional circuit parameters -- 13.6 Principal component analysis: towards electronic tongue application -- 13.7 Conclusions -- References -- 14 Higher-order fractional elements: realizations and applications -- 14.1 Introduction -- 14.2 Realization of FOEs with fractional order < -- 1 -- 14.2.1 CFE approximation-based FOC emulation -- 14.2.2 FI emulation -- 14.2.3 Functional block diagram-based emulation -- 14.3 Realization of fractional-order element with 1 < -- fractional order< -- n -- 14.3.1 IIMC-based realization -- 14.3.2 GIC-based realization -- 14.3.3 FBD-based realization -- 14.4 Application -- 14.4.1 Stability analysis -- 14.4.2 Simulation and experimental results -- 14.4.2.1 Functional verification of FI and FOC -- 14.4.2.2 Functional verification of FOF -- 14.5 Conclusion -- References -- 15 Fabrication of polymer nanocomposite-based fractional-order capacitor: a guide -- 15.1 Introduction -- 15.1.1 History -- 15.1.2 Present trends in polymer NCs -- 15.1.2.1 Porous polymer-based -- 15.1.2.2 Ferroelectric polymer-based -- 15.1.2.3 Epoxy resin-based -- 15.2 Polymers -- 15.2.1 Polymer NCs -- 15.2.2 Polymer NC as FOC dielectric -- 15.3 Ferroelectric polymers -- 15.3.1 PVDF -- 15.3.1.1 Dielectric properties of PVDF -- 15.3.1.2 Inducing β-phase PVDF -- 15.3.1.3 Ferroelectric effect -- 15.3.2 Porous polymers.
,
15.3.2.1 Dielectric properties of PMMA.
Weitere Ausg.:
ISBN 9780323900904
Weitere Ausg.:
ISBN 0323900909
Sprache:
Englisch
Bookmarklink