Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands ; : Elsevier,
    UID:
    almahu_9949983839302882
    Umfang: 1 online resource (596 pages)
    ISBN: 9780323902458 , 0323902456
    Serie: Micro & nano technologies
    Inhalt: "Sensing and Biosensing with Optically Active Nanomaterials summarizes the potential sensing applications of optically (chromogenic and fluorogenic) active, nano-sized, organic, and inorganic materials for the selective detection of ionic analytes (such as metal ions and anions) in various environmental and biological samples. Sections cover design, synthesis, sensing mechanisms and applications for detecting ionic analytes. Each chapter deals with the sensing applications of one kind of nanomaterial."--
    Anmerkung: Front Cover -- Sensing and Biosensing with Optically Active Nanomaterials -- Sensing and Biosensing with Optically Active Nanomaterials -- Copyright -- Contents -- Contributors -- 1 - Sensing and biosensing with optically active nanomaterials: a note -- 1. Introduction -- 2. Types and optically active nanomaterials -- 3. Sensing and biosensing with nanomaterials -- 4. Conclusions -- References -- 2 - Preparation of carbon dots and their sensing applications -- 1. Introduction -- 2. Synthetic strategies -- 2.1 Top-down approaches -- 2.2 Bottom-up approaches -- 3. Sensing mechanisms -- 3.1 Photo-induced electron transfer (PET) -- 3.2 Fluorescence resonance energy transfer (FRET) -- 3.3 Inner filter effect (IFE) -- 3.4 Static/dynamic quenching effect (SQE/DQE) -- 3.5 Aggregation-induced emission enhancement (AIEE) effect -- 3.6 Aggregation-induced emission quenching (AIEQ) effect -- 4. Chemosensing using carbon dots -- 4.1 Cations sensing -- 4.1.1 Iron ions (Fe3+) detection -- 4.1.2 Mercury ions (Hg2+) detection -- 4.1.3 Aluminum ions (Al3+) detection -- 4.1.4 Copper ions (Cu2+) detection -- 4.2 Anions sensing -- 4.2.1 Reactive oxygen species (ROS) detection -- 4.2.2 Halogen anions detection -- 4.3 Molecules sensing -- 4.3.1 Biothiols detection -- 4.3.2 Gas molecules detection -- 5. Intracellular in situ sensing using carbon dots -- 5.1 Intracellular ions sensing -- 5.2 Intracellular molecules sensing -- 5.3 Intracellular organelles sensing -- 5.3.1 Mitochondria imaging -- 5.3.2 Golgi apparatus imaging -- 5.3.3 Lysosome imaging -- 5.3.4 Nucleolus imaging -- 5.4 Dynamic processes sensing -- 5.4.1 pH sensing -- 5.4.2 Enzyme activity monitoring -- References -- 3 - Preparation and structure tuning of graphene quantum dots for optical applications in chemosensing, biosensing, ... -- 1. Introduction -- 2. Synthetic methods of graphene quantum dots. , 2.1 Top-down approaches -- 2.2 Bottom-up approaches -- 3. Structure tuning of graphene quantum dots -- 3.1 Nitrogen doping -- 3.2 Boron doping -- 3.3 Other heteroatom doping -- 3.4 Codoping -- 4. Optical properties of graphene quantum dots -- 4.1 Absorption and photoluminescence -- 4.2 Upconversion luminescence -- 5. Sensing mechanism -- 5.1 Dynamic quenching effect -- 5.1.1 Fluorescence resonance energy transfer (FRET) -- 5.1.2 Photo-induced electron transfer (PET) -- 5.2 Static quenching effect -- 5.3 Aggregation-induced emission enhancement (AIEE) effect -- 5.4 Aggregation-induced emission quenching (AIEQ) effect -- 5.5 Inner filter effect (IFE) -- 6. Chemosensing using graphene quantum dots -- 6.1 Metal-ion sensing -- 6.1.1 Direct detection -- 6.1.2 Modified GQDs for detection -- 6.2 Anion sensing -- 6.3 Organic molecule sensing -- 7. Biosensing using graphene quantum dots -- 7.1 Protein sensing -- 7.2 DNA/RNA sensing -- 7.3 Small biomolecule sensing -- 8. Bioimaging using graphene quantum dots -- 8.1 Cytotoxicity and biocompatibility -- 8.2 Cell imaging -- 8.3 In vivo imaging -- 9. Conclusions and future perspectives -- Acknowledgments -- References -- 4 - Synthesis, functionalization, and optical sensing applications of graphene oxide -- 1. Introduction -- 2. Synthesis and properties of graphene oxide -- 2.1 Synthesis techniques of graphene oxide -- 2.2 Chemical and physical properties of graphene oxide -- 3. Surface functionalization of graphene oxide -- 3.1 Covalent functionalization of graphene oxide -- 3.2 Noncovalent functionalization of GO -- 4. Application of GO-based optical sensors -- 4.1 Detection of metal ions -- 4.2 Detection of nucleic acids -- 4.3 Detection of protein -- 4.4 Detection of biomolecules -- 4.5 Detection of pathogens and cells -- 4.6 In vivo biosensing and bioimaging applications -- 5. Conclusion and outlook. , Acknowledgments -- References -- 5 - Sensing and biosensing with 2D nanosheets beyond graphene -- 1. Introduction -- 2. Graphitic carbon nitride (g-C3N4) -- 2.1 Sensing using g-C3N4 -- 3. Hexagonal boron nitride (h-BN) -- 3.1 Sensing using h-BN -- 4. Black phosphorous (BP) -- 4.1 Sensing using BP -- 5. Metal nitrides/carbides (MXenes) -- 5.1 Sensing using MXenes -- 6. Conclusions -- References -- 6 - Fluorescent sensing using metal-organic and covalent-organic framework nanosheets -- 1. Introduction -- 2. Metal-organic frameworks -- 2.1 Introduction -- 2.2 Synthesis methods for 2D MOF nanosheets (MONs) -- 2.2.1 Top-down method -- 2.2.1.1 Sonication exfoliation -- 2.2.1.2 Micromechanical exfoliation -- 2.2.1.3 Freeze-thaw exfoliation -- 2.2.1.4 Intercalation and chemical exfoliation -- 2.2.2 Bottom-up method -- 2.2.2.1 Interfacial synthesis method -- 2.2.2.2 Surfactant-assisted method -- 2.2.2.3 Template method -- 2.2.2.4 Sonication synthesis method -- 2.2.2.5 Other synthesis methods -- 2.3 2D MOFs as photoluminescence sensor -- 3. Covalent-organic frameworks (COFs) -- 3.1 Synthesis of 2D COFs -- 3.2 2D COFs as photoluminescence sensor -- 4. Conclusion -- References -- 7 - Colorimetric sensing using plasmonic nanoparticles -- 1. Introduction -- 1.1 Introduction to plasmonic nanoparticles -- 1.2 Optical properties of plasmonic nanoparticles -- 1.3 Size and shape effects -- 1.4 Composition effects -- 1.5 The effects of surrounding media -- 2. Synthesis of plasmonic nanoparticles -- 2.1 Surface functionalization and modification of plasmonic nanoparticles -- 3. Characterization of plasmonic nanoparticles -- 4. Plasmonic nanoparticles as colorimetric sensors -- 4.1 Aggregation-based sensing -- 4.2 Nonaggregation-based sensing -- 5. Surface-enhanced Raman scattering (SERS) -- 6. Conclusions -- References. , 8 - Atomically precise fluorescent metal nanoclusters: design, synthesis, and sensing applications -- 1. Introduction -- 2. Synthesis of metal nanoclusters -- 2.1 Bottom-up approach: "atoms to clusters" -- 2.2 Top-down approach- "nanoparticles to clusters" -- 3. Functionalization and bioconjugation of fluorescent metal nanoclusters -- 4. Factors of luminescence of metal NCs -- 4.1 Size effect -- 4.2 Ligand effect -- 4.3 Structure and valence effect -- 5. Properties of metal nanoclusters -- 5.1 Absorption and fluorescence properties -- 5.2 Two-photon absorption -- 5.3 Electrochemiluminescence -- 5.4 Solvatochromic effect -- 5.5 Polarized emission and fluorescence lifetimes -- 6. Sensing applications with fluorescent metal NCs -- 6.1 Sensing of metal ions -- 6.2 Sensing of anions -- 6.3 Miscellaneous examples of sensing applications -- 7. Applications in cancer therapy -- 8. Biolabeling and imaging -- 9. Conclusions and perspective -- References -- 9 - Surface-modified quantum dots for advanced sensing applications -- 1. Introduction -- 2. Synthesis of quantum dots -- 2.1 Organic phase synthesis -- 2.2 Aqueous-phase synthesis -- 3. Optical properties of quantum dots and their tuning -- 3.1 Quantum confinement effect -- 3.2 Absorption and emission from quantum dots -- 3.3 Size tunable band gap and optical features -- 3.4 Dopant induced optical characteristics -- 3.5 Shape dependent optical properties -- 3.6 Surface-dependent optical properties -- 4. Surface modification of quantum dots -- 4.1 Shelling of quantum dot surface -- 4.2 Ligand exchange -- 4.3 Surface complexation reaction -- 5. Sensing with quantum dots -- 5.1 General aspects -- 5.2 Ions sensing -- 5.2.1 Cations sensing -- 5.2.2 Anions sensing -- 5.3 pH sensors -- 5.4 Detection of hazardous organic compounds -- 5.4.1 Pesticide sensors -- 5.4.2 Explosive sensors -- 5.5 Sensing of biomolecules. , 5.5.1 Nucleic acid -- 5.5.2 Amino acids -- 5.5.2.1 Vitamins -- 5.5.3 Neurotransmitters -- 6. Conclusions -- References -- 10 - Sensing and biosensing with silicon quantum dots -- 1. Introduction -- 2. Synthesis of Si-QDs -- 2.1 Chemical routes for the synthesis of Si-QDs -- 2.1.1 Reduction of silicon halides -- 2.1.2 Zintl salt oxidation -- 2.1.3 Decomposition of silicon containing precursors -- 2.1.4 Template synthesis -- 2.1.5 Electroetching -- 2.2 Physical routes for the synthesis of Si-QDs -- 2.2.1 Plasma synthesis -- 2.2.2 Laser assisted methodologies -- 3. Surface modification -- 4. Sensing with of Si-QDs -- 4.1 Sensing of metal ions and anions -- 4.2 Sensing of pesticides and explosives -- 4.3 Sensing of biomolecules -- 4.4 Sensing of pH and enzymatic activity -- 5. Conclusions -- Acknowledgment -- References -- 11 - Upconversion nanoparticles for the future of biosensing -- 1. Introduction -- 2. Rational design of upconversion nanosensors -- 2.1 The design principle for upconversion sensing -- 2.2 Manipulation of upconversion luminescence -- 2.3 Enhancement of upconversion luminescence -- 2.4 Tuning upconversion luminescence lifetime -- 3. Synthesis and modification of upconversion nanoparticles -- 3.1 Common synthetic approaches -- 3.2 Core-shell nanoparticles -- 3.3 Surface modification of upconversion nanoparticles -- 4. Sensing applications of upconversion nanoparticles -- 4.1 Design strategy based on FRET mechanism -- 4.1.1 Upconversion sensing by luminescence intensity -- 4.1.1.1 Detection of anions -- 4.1.1.1.1 Detection of CN− -- 4.1.1.1.2 Detection of ClO− -- 4.1.1.2 Detection of metal ions -- 4.1.1.2.1 Detection of Cu2+ -- 4.1.1.2.2 Detection of Ca2+ -- 4.1.1.2.3 Detection of Zn2+ -- 4.1.1.2.4 Detection of Hg2+ and MeHg+ -- 4.1.1.2.5 Detection of Pb2+ -- 4.1.1.3 Detection of reactive species. , 4.1.1.3.1 Detection of reactive oxygen species (ROS) and reactive nitrogen species (RNS).
    Weitere Ausg.: ISBN 9780323902441
    Weitere Ausg.: ISBN 0323902448
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780323902458?
Meinten Sie 9780323900447?
Meinten Sie 9780323901444?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz