Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9947362748102882
    Umfang: XII, 315 p. , online resource.
    ISBN: 9780387217246
    Serie: CMS Books in Mathematics, Ouvrages de mathématiques de la SMC,
    Inhalt: The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras).
    Anmerkung: I Groups -- 1 Classical Techniques of Combinatorial Group Theory -- 2 Test Elements -- 3 Other Special Elements -- 4 Automorphic Orbits -- II Polynomial Algebras -- 5 The Jacobian Conjecture -- 6 The Cancellation Conjecture -- 7 Nagata’s Problem -- 8 The Embedding Problem -- 9 Coordinate Polynomials -- 10 Test Polynomials -- III Free Nielsen-Schreier Algebras -- 11 Schreier Varieties of Algebras -- 12 Rank Theorems and Primitive Elements -- 13 Generalized Primitive Elements -- 14 Free Leibniz Algebras -- References -- Notation Index -- Author Index.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9781441923448
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    gbv_1655482106
    Umfang: Online-Ressource (XII, 315 p, online resource)
    ISBN: 9780387217246
    Serie: CMS Books in Mathematics, Ouvrages de mathématiques de la SMC
    Inhalt: The main purpose of this book is to show how ideas from combinatorial group theory have spread to two other areas of mathematics: the theory of Lie algebras and affine algebraic geometry. Some of these ideas, in turn, came to combinatorial group theory from low-dimensional topology in the beginning of the 20th Century. This book is divided into three fairly independent parts. Part I provides a brief exposition of several classical techniques in combinatorial group theory, namely, methods of Nielsen, Whitehead, and Tietze. Part II contains the main focus of the book. Here the authors show how the aforementioned techniques of combinatorial group theory found their way into affine algebraic geometry, a fascinating area of mathematics that studies polynomials and polynomial mappings. Part III illustrates how ideas from combinatorial group theory contributed to the theory of free algebras. The focus here is on Schreier varieties of algebras (a variety of algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free in the same variety of algebras)
    Weitere Ausg.: ISBN 9781441923448
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Michalev, Aleksandr A., 1965 - Combinatorial methods New York : Springer, 2004 ISBN 0387405623
    Weitere Ausg.: ISBN 9781441923448
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Kombinatorische Gruppentheorie ; Lie-Algebra ; Algebraische Geometrie ; Affine Geometrie
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780387215846?
Meinten Sie 9780387212456?
Meinten Sie 9780387215266?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz