Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    New York, NY : Springer New York
    UID:
    b3kat_BV042410902
    Umfang: 1 Online-Ressource (XIII, 288 p)
    ISBN: 9780387225265 , 9781441918963
    Serie: Advanced Texts in Physics
    Anmerkung: In many situations, physical quantities are perturbed or evolve in a not fully predictable way. We then speak about noise or fluctuations and we are generally faced to different questions such as: What are the correct physical models to describe them? What are the most practical mathematical tools to deal with them? How can relevant information be extracted in the presence of noise? Noise theory and application to physics provides a precise description of the theoretical background and practical tools for noise and fluctuation analyses. It not only introduces basic mathematical descriptions and properties of noise and fluctuations but also discusses the physical origin of different noise models and presents some statistical methods which optimize measurements in the presence of such fluctuations. Noise theory and application to physics investigates a number of ideas about noise and fluctuations in a single book in relation with probability and stochastic processes, information theory, statistical physics and statistical inference. The different notions are illustrated with many application examples from physics and engineering science and problems with solutions allow the reader to both check his understanding and to deepen some aspects. Indeed, the main objective of Noise theory and application to physics is to be a practical guide for the reader for going from fluctuation to information. It will thus be of great interest to undergraduate or postgraduate students and researchers in physics and engineering sciences
    Sprache: Englisch
    Schlagwort(e): Fluktuation ; Rauschen
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9949198966102882
    Umfang: XIII, 288 p. , online resource.
    Ausgabe: 1st ed. 2004.
    ISBN: 9780387225265
    Serie: Advanced Texts in Physics,
    Inhalt: In many situations, physical quantities are perturbed or evolve in a not fully predictable way. We then speak about noise or fluctuations and we are generally faced to different questions such as: What are the correct physical models to describe them? What are the most practical mathematical tools to deal with them? How can relevant information be extracted in the presence of noise? Noise theory and application to physics provides a precise description of the theoretical background and practical tools for noise and fluctuation analyses. It not only introduces basic mathematical descriptions and properties of noise and fluctuations but also discusses the physical origin of different noise models and presents some statistical methods which optimize measurements in the presence of such fluctuations. Noise theory and application to physics investigates a number of ideas about noise and fluctuations in a single book in relation with probability and stochastic processes, information theory, statistical physics and statistical inference. The different notions are illustrated with many application examples from physics and engineering science and problems with solutions allow the reader to both check his understanding and to deepen some aspects. Indeed, the main objective of Noise theory and application to physics is to be a practical guide for the reader for going from fluctuation to information. It will thus be of great interest to undergraduate or postgraduate students and researchers in physics and engineering sciences.
    Anmerkung: 1 Introduction -- 2 Random Variables -- 2.1 Random Events and Probability -- 2.2 Random Variables -- 2.3 Means and Moments -- 2.4 Median and Mode of a Probability Distribution -- 2.5 Joint Random Variables -- 2.6 Covariance -- 2.7 Change of Variables -- 2.8 Stochastic Vectors -- Exercises -- 3 Fluctuations and Covariance -- 3.1 Stochastic Processes -- 3.2 Stationarity and Ergodicity -- 3.3 Ergodicity in Statistical Physics -- 3.4 Generalization to Stochastic Fields -- 3.5 Random Sequences and Cyclostationarity -- 3.6 Ergodic and Stationary Cases -- 3.7 Application to Optical Coherence -- 3.8 Fields and Partial Differential Equations -- 3.9 Power Spectral Density -- 3.10 Filters and Fluctuations -- 3.11 Application to Optical Imaging -- 3.12 Green Functions and Fluctuations -- 3.13 Stochastic Vector Fields -- 3.14 Application to the Polarization of Light -- 3.15 Ergodicity and Polarization of Light -- 3.16 Appendix: Wiener-Khinchine Theorem -- Exercises -- 4 Limit Theorems and Fluctuations -- 4.1 Sum of Random Variables -- 4.2 Characteristic Function -- 4.3 Central Limit Theorem -- 4.4 Gaussian Noise and Stable Probability Laws -- 4.5 A Simple Model of Speckle -- 4.6 Random Walks -- 4.7 Application to Diffusion -- 4.8 Random Walks and Space Dimensions -- 4.9 Rare Events and Particle Noise -- 4.10 Low Flux Speckle -- Exercises -- 5 Information and Fluctuations -- 5.1 Shannon Information -- 5.2 Entropy -- 5.3 Kolmogorov Complexity -- 5.4 Information and Stochastic Processes -- 5.5 Maximum Entropy Principle -- 5.6 Entropy of Continuous Distributions -- 5.7 Entropy, Propagation and Diffusion -- 5.8 Multidimensional Gaussian Case -- 5.9 Kullback-Leibler Measure -- 5.10 Appendix: Lagrange Multipliers -- Exercises -- 6 Thermodynamic Fluctuations -- 6.1 Gibbs Statistics -- 6.2 Free Energy -- 6.3 Connection with Thermodynamics -- 6.4 Covariance of Fluctuations -- 6.5 A Simple Example -- 6.6 Fluctuation-Dissipation Theorem -- 6.7 Noise at the Terminals of an RC Circuit -- 6.8 Phase Transitions -- 6.9 Critical Fluctuations -- Exercises -- 7 Statistical Estimation -- 7.1 The Example of Poisson Noise -- 7.2 The Language of Statistics -- 7.3 Characterizing an Estimator -- 7.4 Maximum Likelihood Estimator -- 7.5 Cramer-Rao Bound in the Scalar Case -- 7.6 Exponential Family -- 7.7 Example Applications -- 7.8 Cramer-Rao Bound in the Vectorial Case -- 7.9 Likelihood and the Exponential Family -- 7.10 Examples in the Exponential Family -- 7.11 Robustness of Estimators -- 7.12 Appendix: Scalar Cramer-Rao Bound -- 7.13 Appendix: Efficient Statistics -- 7.14 Appendix: Vectorial Cramer-Rao Bound -- Exercises -- 8 Examples of Estimation in Physics -- 8.1 Measurement of Optical Flux -- 8.2 Measurement Accuracy in the Presence of Gaussian Noise -- 8.3 Estimating a Detection Efficiency -- 8.4 Estimating the Covariance Matrix -- 8.5 Application to Coherency Matrices -- 8.6 Making Estimates in the Presence of Speckle -- 8.7 Fluctuation-Dissipation and Estimation -- Exercises -- 9 Solutions to Exercises -- 9.1 Chapter Two. Random Variables -- 9.2 Chapter Three. Fluctuations and Covariance -- 9.3 Chapter Four. Limit Theorems and Fluctuations -- 9.4 Chapter Five. Information and Fluctuations -- 9.5 Chapter Six. Statistical Physics -- 9.6 Chapter Seven. Statistical Estimation -- 9.7 Chapter Eight. Examples of Estimation in Physics -- References.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9780387201542
    Weitere Ausg.: Printed edition: ISBN 9781468495751
    Weitere Ausg.: Printed edition: ISBN 9781441918963
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780367225261?
Meinten Sie 9780387224565?
Meinten Sie 9780387215266?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz