Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Buch
    Buch
    New York :Springer,
    UID:
    almahu_BV021281129
    Umfang: XIX, 551 S. : , graph. Darst. ; , 24 cm.
    ISBN: 0-387-26142-7
    Serie: Springer series in statistics
    Anmerkung: Literaturverz. S. 487 - 536
    Sprache: Englisch
    Fachgebiete: Informatik , Mathematik
    RVK:
    RVK:
    Schlagwort(e): Nichtlineare Zeitreihenanalyse ; Parametrisches Verfahren ; Nichtlineare Zeitreihenanalyse ; Nichtparametrisches Verfahren
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    New York, NY : Springer New York
    UID:
    b3kat_BV042419131
    Umfang: 1 Online-Ressource (XX, 552 p)
    ISBN: 9780387693958 , 9780387261423
    Serie: Springer Series in Statistics
    Anmerkung: Amongmanyexcitingdevelopmentsinstatisticsoverthelasttwodecades, nonlineartimeseriesanddata-analyticnonparametricmethodshavegreatly advanced along seemingly unrelated paths. In spite of the fact that the - plication of nonparametric techniques in time series can be traced back to the 1940s at least, there still exists healthy and justi?ed skepticism about the capability of nonparametric methods in time series analysis. As - thusiastic explorers of the modern nonparametric toolkit, we feel obliged to assemble together in one place the newly developed relevant techniques. Theaimofthisbookistoadvocatethosemodernnonparametrictechniques that have proven useful for analyzing real time series data, and to provoke further research in both methodology and theory for nonparametric time series analysis. Modern computers and the information age bring us opportunities with challenges. Technological inventions have led to the explosion in data c- lection (e.g., daily grocery sales, stock market trading, microarray data). The Internet makes big data warehouses readily accessible. Although cl- sic parametric models, which postulate global structures for underlying systems, are still very useful, large data sets prompt the search for more re?nedstructures,whichleadstobetterunderstandingandapproximations of the real world. Beyond postulated parametric models, there are in?nite other possibilities. Nonparametric techniques provide useful exploratory tools for this venture, including the suggestion of new parametric models and the validation of existing ones
    Sprache: Englisch
    Schlagwort(e): Nichtlineare Zeitreihenanalyse ; Parametrisches Verfahren ; Nichtlineare Zeitreihenanalyse ; Nichtparametrisches Verfahren
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    New York, NY :Springer New York,
    UID:
    almahu_9947362888702882
    Umfang: XX, 552 p. , online resource.
    ISBN: 9780387693958
    Serie: Springer Series in Statistics,
    Inhalt: Amongmanyexcitingdevelopmentsinstatisticsoverthelasttwodecades, nonlineartimeseriesanddata-analyticnonparametricmethodshavegreatly advanced along seemingly unrelated paths. In spite of the fact that the - plication of nonparametric techniques in time series can be traced back to the 1940s at least, there still exists healthy and justi?ed skepticism about the capability of nonparametric methods in time series analysis. As - thusiastic explorers of the modern nonparametric toolkit, we feel obliged to assemble together in one place the newly developed relevant techniques. Theaimofthisbookistoadvocatethosemodernnonparametrictechniques that have proven useful for analyzing real time series data, and to provoke further research in both methodology and theory for nonparametric time series analysis. Modern computers and the information age bring us opportunities with challenges. Technological inventions have led to the explosion in data c- lection (e.g., daily grocery sales, stock market trading, microarray data). The Internet makes big data warehouses readily accessible. Although cl- sic parametric models, which postulate global structures for underlying systems, are still very useful, large data sets prompt the search for more re?nedstructures,whichleadstobetterunderstandingandapproximations of the real world. Beyond postulated parametric models, there are in?nite other possibilities. Nonparametric techniques provide useful exploratory tools for this venture, including the suggestion of new parametric models and the validation of existing ones.
    Anmerkung: Characteristics of Time Series -- ARMA Modeling and Forecasting -- Parametric Nonlinear Time Series Models -- Nonparametric Density Estimation -- Smoothing in Time Series -- Spectral Density Estimation and Its Applications -- Nonparametric Models -- Model Validation -- Nonlinear Prediction.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9780387261423
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780387261423?
Meinten Sie 9780387261027?
Meinten Sie 9780387261416?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz