Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Buch
    Buch
    New York [u.a.] :Springer,
    Dazugehörige Titel
    UID:
    almafu_BV011024947
    Umfang: XIV, 183 S. : , graph. Darst.
    ISBN: 0-387-94724-8
    Serie: Lecture notes in statistics 118
    Inhalt: Artificial "neural networks" are now widely used as flexible models for regression classification applications, but questions remain regarding what these models mean, and how they can safely be used when training data is limited. Bayesian Learning for Neural Networks shows that Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional neural network learning methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. Use of these models in practice is made possible using Markov chain Monte Carlo techniques. Both the theoretical and computational aspects of this work are of wider statistical interest, as they contribute to a better understanding of how Bayesian methods can be applied to complex problems
    Inhalt: Presupposing only the basic knowledge of probability and statistics, this book should be of interest to many researchers in statistics, engineering, and artificial intelligence. Software for Unix systems that implements the methods described is freely available over the Internet
    Anmerkung: Zugl.: Diss.
    Sprache: Englisch
    Fachgebiete: Wirtschaftswissenschaften , Mathematik
    RVK:
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Datenanalyse ; Bayes-Verfahren ; Neuronales Netz ; Markov-Kette ; Monte-Carlo-Simulation ; Hochschulschrift ; Hochschulschrift ; Hochschulschrift ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    New York :Springer,
    UID:
    almahu_9949087841702882
    Umfang: 1 online resource (193 pages) : , illustrations.
    ISBN: 9781461207450 (e-book)
    Serie: Lecture notes in statistics ; 118
    Weitere Ausg.: Print version: Neal, Radford M. Bayesian learning for neural networks. New York : Springer, [1996] ISBN 9780387947242
    Sprache: Englisch
    Fachgebiete: Wirtschaftswissenschaften , Mathematik
    RVK:
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Electronic books. ; Hochschulschrift
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    New York, NY :Springer New York :
    Dazugehörige Titel
    UID:
    almahu_9947363017202882
    Umfang: 204 p. , online resource.
    ISBN: 9781461207450
    Serie: Lecture Notes in Statistics, 118
    Inhalt: Artificial "neural networks" are widely used as flexible models for classification and regression applications, but questions remain about how the power of these models can be safely exploited when training data is limited. This book demonstrates how Bayesian methods allow complex neural network models to be used without fear of the "overfitting" that can occur with traditional training methods. Insight into the nature of these complex Bayesian models is provided by a theoretical investigation of the priors over functions that underlie them. A practical implementation of Bayesian neural network learning using Markov chain Monte Carlo methods is also described, and software for it is freely available over the Internet. Presupposing only basic knowledge of probability and statistics, this book should be of interest to researchers in statistics, engineering, and artificial intelligence.
    Anmerkung: 1 Introduction -- 1.1 Bayesian and frequentist views of learning -- 1.2 Bayesian neural networks -- 1.3 Markov chain Monte Carlo methods -- 1.4 Outline of the remainder of the book -- 2 Priors for Infinite Networks -- 2.1 Priors converging to Gaussian processes -- 2.2 Priors converging to non-Gaussian stable processes -- 2.3 Priors for nets with more than one hidden layer -- 2.4 Hierarchical models -- 3 Monte Carlo Implementation -- 3.1 The hybrid Monte Carlo algorithm -- 3.2 An implementation of Bayesian neural network learning -- 3.3 A demonstration of the hybrid Monte Carlo implementation -- 3.4 Comparison of hybrid Monte Carlo with other methods -- 3.5 Variants of hybrid Monte Carlo -- 4 Evaluation of Neural Network Models -- 4.1 Network architectures, priors, and training procedures -- 4.2 Tests of the behaviour of large networks -- 4.3 Tests of Automatic Relevance Determination -- 4.4 Tests of Bayesian models on real data sets -- 5 Conclusions and Further Work -- 5.1 Priors for complex models -- 5.2 Hierarchical Models — ARD and beyond -- 5.3 Implementation using hybrid Monte Carlo -- 5.4 Evaluating performance on realistic problems -- A Details of the Implementation -- A.1 Specifications -- A.1.1 Network architecture -- A.1.2 Data models -- A.1.3 Prior distributions for parameters and hyperparameters -- A.1.4 Scaling of priors -- A.2 Conditional distributions for hyperparameters -- A.2.1 Lowest-level conditional distributions -- A.2.2 Higher-level conditional distributions -- A.3 Calculation of derivatives -- A.3.1 Derivatives of the log prior density -- A.3.2 Log likelihood derivatives with respect to unit values -- A.3.3 Log likelihood derivatives with respect to parameters -- A.4 Heuristic choice of stepsizes -- A.5 Rejection sampling from the prior -- B Obtaining the software.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9780387947242
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780387848242?
Meinten Sie 9780387747248?
Meinten Sie 9780387921242?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz