Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    almahu_9949591365002882
    Format: 1 online resource (232 pages)
    Edition: First edition.
    ISBN: 0-443-13227-5
    Series Statement: Corrosion Atlas Series
    Content: Corrosion Atlas Case Studies: 2023 Edition gives engineers expedient daily corrosion solutions for common industrial equipment no matter the industry. Providing a purely operational level view, this reference is designed as concise case studies categorized by material and includes content surrounding the phenomenon, equipment appearance supported by a color image, time of service, conditions, cause and suggested remedies. Additional reference listings for deeper understanding beyond the practical elements are also included. Rounding out with an introductory foundational layer of corrosion principles critical to all engineers, this book delivers the daily tool required for engineers today to solve their equipment’s corrosion problems.
    Note: Intro -- Corrosion Atlas Case Studies: 2023 Edition -- Copyright -- Contents -- About the Editor -- Corrosion Atlas Editorial Board -- Aisha H. Al-Moubaraki, Associate Professor, University of Jeddah, Saudi Arabia -- Talal A. Aljohani, Professor, King Abdulaziz City for Science and Technology, Saudi Arabia -- Raymundo Case, Professor, Texas AandM University, United States -- Nafiseh Ebrahimi, PhD, PEng, Research Officer, National Research Council Canada, Canada -- Mascha van Hofweegen, Senior Consultant, KWA Bedrijfsadviseurs BV, the Netherlands -- Hideyuki Kanematsu, PhD, FASM, FIMF, Professor, National Institute of Technology, Suzuka College, Japan -- Sandra Le Manchet, PhD, Mechanical Engineer, France -- Sanja Martinez, PhD, Professor, University of Zagreb, Croatia -- Mohsen Mazraeh, SIMCO Technologies Inc. Dubai Branch, Dubai -- Raul B. Rebak, PhD, Corrosion Engineer, United States -- Torben Lund Skovhus, PhD, Docent and Project Manager, VIA University College, Denmark -- Esra Ilhan-Sungur, PhD, Professor, Istanbul University, Turkey -- Annelise Zeemann, DSc, TECMETAL Technical Director, Brazil -- Hua Zhang, Professor, Beijing Institute of Petrochemical Technology, China -- Contributors Bios -- Preface to the Third Volume -- User Guide for the Corrosion Atlas -- Corrosion Atlas Volume III Classification of the Case Histories -- Introduction -- Part I: General Aspects of Corrosion, Corrosion Control, and Corrosion Prevention -- 1. Definition of Corrosion -- 2. The Consequences of Corrosion -- 2.1. Technical Consequences -- 2.2. Economic Consequences -- 2.3. Social Consequences -- 3. The Theory of Electrochemical Corrosion -- 3.1. Oxidation and Reduction -- 3.2. Polarization and Depolarization -- 3.3. The Corrosion Potential -- 3.4. The E/pH Diagram (Pourbaix Diagram) -- 3.5. Corrosion Rate and Polarization Diagrams -- 3.6. Closing Remarks. , 4. Forms of Electrochemical Corrosion -- 4.1. Uniform Corrosion -- 4.2. Localized Corrosion -- 4.3. Galvanic Corrosion -- 4.4. Crevice Corrosion -- 4.5. Pitting Corrosion -- 4.6. Intergranular Corrosion -- 4.7. Selective Leaching (Dealloying) -- 4.8. Impact Corrosion -- 4.8.1. Erosion Corrosion -- 4.8.2. Impingement Corrosion -- 4.8.3. Cavitation Corrosion -- 4.8.4. Fretting Corrosion -- 4.9. Stress Corrosion Cracking and Corrosion Fatigue -- 5. Failure Analysis and Diagnosis -- 6. Corrosion Control -- 7. Corrosion Prevention at the Design Stage -- 7.1. General -- 7.2. Factors Influencing Selection of Materials and Corrosion Resistance -- 7.3. Design Rules -- Part II: Corrosion Topics -- 1. Cavitation Damage -- 1.1. Occurrence -- 1.2. Prevention -- 2. Erosion Corrosion -- 2.1. Occurrence -- 2.1.1. Uniform Attack -- 2.1.2. Local Attack -- 2.2. Prevention -- 3. Exfoliation Corrosion -- 3.1. Occurrence -- 3.2. Prevention -- 4. Fatigue and Corrosion Fatigue -- 4.1. Influencing Factors -- 4.1.1. Installations -- 4.1.2. Stresses -- 4.1.3. Environment -- 4.1.4. Metal Composition -- 4.2. Prevention -- 5. Filiform Corrosion -- 5.1. Mechanism -- 5.2. Prevention -- 6. Galvanic Corrosion -- 6.1. Conditions for the Occurrence of Galvanic Corrosion -- 6.2. Factors That Can Affect the Rate of Galvanic Corrosion -- 6.2.1. The Polarization Effect -- 6.2.2. The Electrolyte -- 6.2.3. Aeration and Flow Rate -- 6.2.4. The Surface Area Ratio -- 6.3. Forms of Galvanic Corrosion -- 6.3.1. Contact Corrosion -- 6.3.2. Deposition Corrosion -- 6.3.3. Reversal of Potential -- 6.3.4. Thermogalvanic Corrosion -- 6.4. Prevention -- 7. High-Temperature Corrosion -- 7.1. Carburization -- 7.1.1. Metal Dusting -- 7.2. Nitriding -- 7.3. High-Temperature Oxidation -- 7.4. Sulfidation -- 7.4.1. Hot Corrosion -- 7.4.2. Sulfur Corrosion -- 8. Hydrogen Damage. , 8.1. High-Temperature Hydrogen Attack -- 8.1.1. Occurrence -- 8.1.2. Prevention -- 8.2. Hydride Embrittlement -- 8.2.1. Occurrence -- 8.2.2. Prevention -- 8.3. Hydrogen Blistering -- 8.3.1. Occurrence -- 8.3.2. Prevention -- 8.4. Hydrogen Embrittlement -- 8.4.1. Occurrence -- 8.4.2. Prevention -- 8.5. Hydrogen Stress Cracking -- 8.5.1. Occurrence -- 8.5.2. Prevention -- 9. Microbiologically Induced Corrosion -- 9.1. Corrosion Phenomena -- 9.2. Corrosion of Carbon Steel by Sulfate-Reducing Bacteria -- 9.2.1. Occurrence -- 9.2.2. Mechanism -- 9.2.3. Prevention and Control -- 9.3. Corrosion of Stainless Steel by Iron Bacteria -- 9.3.1. Appearance -- 9.3.2. Occurrence -- 9.3.3. Mechanism -- 9.3.4. Prevention -- 9.4. Corrosion of Concrete by Sulfur Bacteria -- 9.4.1. Mechanism -- 9.4.2. Prevention -- 9.5. Identification of Microbiologically Induced Corrosion -- 10. Pitting and Crevice Corrosion of Stainless Steel -- 10.1. Pitting -- 10.2. Crevice Corrosion -- 10.2.1. Driving Factors -- 10.2.2. Testing -- 10.2.3. The Prevention of Pitting and Crevice Corrosion in Stainless Steel -- 11. Selective Leaching -- 11.1. Dezincification -- 11.1.1. Driving Factors -- 11.1.2. Prevention -- 11.2. Graphitic Corrosion -- 11.2.1. Causes -- 11.2.2. External Characteristics -- 11.2.3. Prevention -- 12. Stress Corrosion Cracking -- 12.1. Caustic Stress Corrosion Cracking of Carbon Steel -- 12.1.1. Occurrence -- 12.1.2. Prevention -- 12.2. Chloride Stress Corrosion Cracking of Stainless Steel -- 12.2.1. Occurrence -- 12.2.2. Prevention -- 12.3. Ammonia Stress Corrosion Cracking in Copper Alloys -- 12.3.1. Occurrence -- 12.3.2. Prevention -- 12.4. Stress Cracking in Plastics -- 13. Weld Decay and Knife-Line Attack in Stainless Steel -- 13.1. Weld Decay -- 13.2. Knife-Line Attack -- 13.2.1. Prevention -- Part III: Corrosion in Water-Bearing Systems. , 1. Corrosion in Boiler Systems -- 1.1. Corrosion in Feedwater Systems -- 1.1.1. Oxygen Corrosion in Line Work and Deaerator -- 1.1.2. Cavitation Erosion, Erosion Corrosion, and Graphitization of Impellers -- 1.1.3. Selective Leaching -- 1.1.4. Cracking in Deaerators -- 1.2. Water-Side Corrosion in Boilers -- 1.2.1. Oxygen Corrosion -- 1.2.2. Caustic Corrosion -- 1.2.3. Acid Corrosion -- 1.2.4. Hydrogen Attack -- 1.2.5. Erosion Corrosion -- 1.2.6. Chelant Corrosion -- 1.2.7. Heat-Flux Corrosion -- 1.2.8. Liquid Metal Embrittlement -- 1.2.9. Steam Blanketing -- 1.2.10. Corrosion by Overheating -- 1.3. Fire-Side Corrosion in Boilers -- 1.3.1. Oil-Ash and Coal-Ash Corrosion -- 1.3.2. Prevention -- 1.3.3. Dew-Point Corrosion -- 1.3.4. Dew-Point Corrosion During Service -- 1.3.5. Prevention -- 1.3.6. Dew-Point Corrosion During Idle Periods -- 1.3.7. Prevention -- 1.3.8. Erosion and Erosion Corrosion -- 1.3.9. Soot-Blowers -- 1.3.10. Leaking Tubes -- 1.3.11. Fly-Ash -- 1.3.12. Design Errors -- 1.4. Corrosion in Steam Systems -- 1.4.1. Erosion (Corrosion) -- 1.4.2. Prevention -- 1.4.3. Caustic Stress Corrosion Cracking -- 1.4.4. Acid Corrosion -- 1.4.5. Excessive Magnetite Formation -- 1.5. Corrosion in Condensate Systems -- 1.5.1. Oxygen Corrosion -- 1.5.2. Prevention -- 1.5.3. Carbonic Acid Corrosion -- 1.5.4. Mechanism -- 1.5.5. Prevention -- 1.5.6. Cavitation Erosion -- 1.5.7. Erosion Corrosion -- 1.5.8. Ammonia Corrosion -- 1.5.9. Galvanic Corrosion -- 2. Corrosion in Warm and Hot Water Heating Systems -- 2.1. Oxygen Corrosion -- 2.1.1. Mechanism -- 2.1.2. Deposition of Magnetite -- 2.1.3. Deposit Corrosion -- 2.1.4. Galvanic Corrosion -- 2.1.5. Corrosion by Chemicals -- 2.1.6. Cavitation Erosion -- 2.1.7. Fire-Side Corrosion -- 2.1.8. Corrosion Prevention -- By Constructive Measures -- By Makeup Treatment -- By Water Conditioning. , 3. Corrosion in Cooling Water Systems -- 3.1. Types of Systems -- 3.1.1. Once-Through Cooling Water Systems -- 3.2. Open (Evaporative) Recirculating Cooling Water Systems With Cooling Tower -- 3.3. Corrosion Problems in Cooling Water Systems -- 3.3.1. Oxygen Corrosion -- 3.3.2. Underdeposit Corrosion -- 3.4. Microbiologically Induced Corrosion -- 3.5. Corrosion by Too High or Too Low pH -- 3.6. Corrosion by Excessive Chloride Content -- 3.7. Erosion Corrosion -- 3.7.1. Cavitation (Erosion and Corrosion) -- 3.7.2. Galvanic Corrosion -- 3.7.3. Crevice Corrosion -- 3.7.4. Stress Corrosion Cracking -- 3.8. Corrosion Prevention and Corrosion Control in Cooling Water Systems -- 3.8.1. By Material Selection -- 3.8.2. By Design -- 3.8.3. By Makeup Treatment and Water Conditioning -- 3.8.4. By Maintenance -- 4. Corrosion in Cold and Hot Tap Water Systems -- 4.1. Galvanic Corrosion -- 4.1.1. Prevention -- 4.2. Oxygen and Carbonic Acid Corrosion -- 4.2.1. Prevention -- 4.3. Underdeposit Corrosion -- 4.3.1. Prevention -- 4.4. Sulfide Corrosion -- 4.4.1. Prevention -- 4.5. Erosion (Corrosion) and Cavitation Erosion -- 4.5.1. Prevention -- 4.6. Other Corrosion Causes -- 4.6.1. Prevention -- Glossary of Terms -- Qualifications and Compositions of the Stainless Steels -- Corrosion Atlas Series -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.27.001 -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.28.001 -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.28.002 -- Corrosion Atlas -- Contributed By: Rodolfo Perticarrari -- Case History 01.03.27.001 -- Corrosion Atlas -- Contributed By: Maros Halama -- Case History 01.03.35.001 -- Corrosion Atlas -- Contributed By: Benz Merchan -- Case History 01.05.18.001 -- Corrosion Atlas -- Contributed By: Benz Merchan. , Case History 01.05.18.002.
    Additional Edition: Print version: Khoshnaw, Fuad Corrosion Atlas Case Studies San Diego : Elsevier,c2023 ISBN 9780443132285
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edoccha_9961311133302883
    Format: 1 online resource (232 pages)
    Edition: First edition.
    ISBN: 0-443-13227-5
    Series Statement: Corrosion Atlas Series
    Content: Corrosion Atlas Case Studies: 2023 Edition gives engineers expedient daily corrosion solutions for common industrial equipment no matter the industry. Providing a purely operational level view, this reference is designed as concise case studies categorized by material and includes content surrounding the phenomenon, equipment appearance supported by a color image, time of service, conditions, cause and suggested remedies. Additional reference listings for deeper understanding beyond the practical elements are also included. Rounding out with an introductory foundational layer of corrosion principles critical to all engineers, this book delivers the daily tool required for engineers today to solve their equipment’s corrosion problems.
    Note: Intro -- Corrosion Atlas Case Studies: 2023 Edition -- Copyright -- Contents -- About the Editor -- Corrosion Atlas Editorial Board -- Aisha H. Al-Moubaraki, Associate Professor, University of Jeddah, Saudi Arabia -- Talal A. Aljohani, Professor, King Abdulaziz City for Science and Technology, Saudi Arabia -- Raymundo Case, Professor, Texas AandM University, United States -- Nafiseh Ebrahimi, PhD, PEng, Research Officer, National Research Council Canada, Canada -- Mascha van Hofweegen, Senior Consultant, KWA Bedrijfsadviseurs BV, the Netherlands -- Hideyuki Kanematsu, PhD, FASM, FIMF, Professor, National Institute of Technology, Suzuka College, Japan -- Sandra Le Manchet, PhD, Mechanical Engineer, France -- Sanja Martinez, PhD, Professor, University of Zagreb, Croatia -- Mohsen Mazraeh, SIMCO Technologies Inc. Dubai Branch, Dubai -- Raul B. Rebak, PhD, Corrosion Engineer, United States -- Torben Lund Skovhus, PhD, Docent and Project Manager, VIA University College, Denmark -- Esra Ilhan-Sungur, PhD, Professor, Istanbul University, Turkey -- Annelise Zeemann, DSc, TECMETAL Technical Director, Brazil -- Hua Zhang, Professor, Beijing Institute of Petrochemical Technology, China -- Contributors Bios -- Preface to the Third Volume -- User Guide for the Corrosion Atlas -- Corrosion Atlas Volume III Classification of the Case Histories -- Introduction -- Part I: General Aspects of Corrosion, Corrosion Control, and Corrosion Prevention -- 1. Definition of Corrosion -- 2. The Consequences of Corrosion -- 2.1. Technical Consequences -- 2.2. Economic Consequences -- 2.3. Social Consequences -- 3. The Theory of Electrochemical Corrosion -- 3.1. Oxidation and Reduction -- 3.2. Polarization and Depolarization -- 3.3. The Corrosion Potential -- 3.4. The E/pH Diagram (Pourbaix Diagram) -- 3.5. Corrosion Rate and Polarization Diagrams -- 3.6. Closing Remarks. , 4. Forms of Electrochemical Corrosion -- 4.1. Uniform Corrosion -- 4.2. Localized Corrosion -- 4.3. Galvanic Corrosion -- 4.4. Crevice Corrosion -- 4.5. Pitting Corrosion -- 4.6. Intergranular Corrosion -- 4.7. Selective Leaching (Dealloying) -- 4.8. Impact Corrosion -- 4.8.1. Erosion Corrosion -- 4.8.2. Impingement Corrosion -- 4.8.3. Cavitation Corrosion -- 4.8.4. Fretting Corrosion -- 4.9. Stress Corrosion Cracking and Corrosion Fatigue -- 5. Failure Analysis and Diagnosis -- 6. Corrosion Control -- 7. Corrosion Prevention at the Design Stage -- 7.1. General -- 7.2. Factors Influencing Selection of Materials and Corrosion Resistance -- 7.3. Design Rules -- Part II: Corrosion Topics -- 1. Cavitation Damage -- 1.1. Occurrence -- 1.2. Prevention -- 2. Erosion Corrosion -- 2.1. Occurrence -- 2.1.1. Uniform Attack -- 2.1.2. Local Attack -- 2.2. Prevention -- 3. Exfoliation Corrosion -- 3.1. Occurrence -- 3.2. Prevention -- 4. Fatigue and Corrosion Fatigue -- 4.1. Influencing Factors -- 4.1.1. Installations -- 4.1.2. Stresses -- 4.1.3. Environment -- 4.1.4. Metal Composition -- 4.2. Prevention -- 5. Filiform Corrosion -- 5.1. Mechanism -- 5.2. Prevention -- 6. Galvanic Corrosion -- 6.1. Conditions for the Occurrence of Galvanic Corrosion -- 6.2. Factors That Can Affect the Rate of Galvanic Corrosion -- 6.2.1. The Polarization Effect -- 6.2.2. The Electrolyte -- 6.2.3. Aeration and Flow Rate -- 6.2.4. The Surface Area Ratio -- 6.3. Forms of Galvanic Corrosion -- 6.3.1. Contact Corrosion -- 6.3.2. Deposition Corrosion -- 6.3.3. Reversal of Potential -- 6.3.4. Thermogalvanic Corrosion -- 6.4. Prevention -- 7. High-Temperature Corrosion -- 7.1. Carburization -- 7.1.1. Metal Dusting -- 7.2. Nitriding -- 7.3. High-Temperature Oxidation -- 7.4. Sulfidation -- 7.4.1. Hot Corrosion -- 7.4.2. Sulfur Corrosion -- 8. Hydrogen Damage. , 8.1. High-Temperature Hydrogen Attack -- 8.1.1. Occurrence -- 8.1.2. Prevention -- 8.2. Hydride Embrittlement -- 8.2.1. Occurrence -- 8.2.2. Prevention -- 8.3. Hydrogen Blistering -- 8.3.1. Occurrence -- 8.3.2. Prevention -- 8.4. Hydrogen Embrittlement -- 8.4.1. Occurrence -- 8.4.2. Prevention -- 8.5. Hydrogen Stress Cracking -- 8.5.1. Occurrence -- 8.5.2. Prevention -- 9. Microbiologically Induced Corrosion -- 9.1. Corrosion Phenomena -- 9.2. Corrosion of Carbon Steel by Sulfate-Reducing Bacteria -- 9.2.1. Occurrence -- 9.2.2. Mechanism -- 9.2.3. Prevention and Control -- 9.3. Corrosion of Stainless Steel by Iron Bacteria -- 9.3.1. Appearance -- 9.3.2. Occurrence -- 9.3.3. Mechanism -- 9.3.4. Prevention -- 9.4. Corrosion of Concrete by Sulfur Bacteria -- 9.4.1. Mechanism -- 9.4.2. Prevention -- 9.5. Identification of Microbiologically Induced Corrosion -- 10. Pitting and Crevice Corrosion of Stainless Steel -- 10.1. Pitting -- 10.2. Crevice Corrosion -- 10.2.1. Driving Factors -- 10.2.2. Testing -- 10.2.3. The Prevention of Pitting and Crevice Corrosion in Stainless Steel -- 11. Selective Leaching -- 11.1. Dezincification -- 11.1.1. Driving Factors -- 11.1.2. Prevention -- 11.2. Graphitic Corrosion -- 11.2.1. Causes -- 11.2.2. External Characteristics -- 11.2.3. Prevention -- 12. Stress Corrosion Cracking -- 12.1. Caustic Stress Corrosion Cracking of Carbon Steel -- 12.1.1. Occurrence -- 12.1.2. Prevention -- 12.2. Chloride Stress Corrosion Cracking of Stainless Steel -- 12.2.1. Occurrence -- 12.2.2. Prevention -- 12.3. Ammonia Stress Corrosion Cracking in Copper Alloys -- 12.3.1. Occurrence -- 12.3.2. Prevention -- 12.4. Stress Cracking in Plastics -- 13. Weld Decay and Knife-Line Attack in Stainless Steel -- 13.1. Weld Decay -- 13.2. Knife-Line Attack -- 13.2.1. Prevention -- Part III: Corrosion in Water-Bearing Systems. , 1. Corrosion in Boiler Systems -- 1.1. Corrosion in Feedwater Systems -- 1.1.1. Oxygen Corrosion in Line Work and Deaerator -- 1.1.2. Cavitation Erosion, Erosion Corrosion, and Graphitization of Impellers -- 1.1.3. Selective Leaching -- 1.1.4. Cracking in Deaerators -- 1.2. Water-Side Corrosion in Boilers -- 1.2.1. Oxygen Corrosion -- 1.2.2. Caustic Corrosion -- 1.2.3. Acid Corrosion -- 1.2.4. Hydrogen Attack -- 1.2.5. Erosion Corrosion -- 1.2.6. Chelant Corrosion -- 1.2.7. Heat-Flux Corrosion -- 1.2.8. Liquid Metal Embrittlement -- 1.2.9. Steam Blanketing -- 1.2.10. Corrosion by Overheating -- 1.3. Fire-Side Corrosion in Boilers -- 1.3.1. Oil-Ash and Coal-Ash Corrosion -- 1.3.2. Prevention -- 1.3.3. Dew-Point Corrosion -- 1.3.4. Dew-Point Corrosion During Service -- 1.3.5. Prevention -- 1.3.6. Dew-Point Corrosion During Idle Periods -- 1.3.7. Prevention -- 1.3.8. Erosion and Erosion Corrosion -- 1.3.9. Soot-Blowers -- 1.3.10. Leaking Tubes -- 1.3.11. Fly-Ash -- 1.3.12. Design Errors -- 1.4. Corrosion in Steam Systems -- 1.4.1. Erosion (Corrosion) -- 1.4.2. Prevention -- 1.4.3. Caustic Stress Corrosion Cracking -- 1.4.4. Acid Corrosion -- 1.4.5. Excessive Magnetite Formation -- 1.5. Corrosion in Condensate Systems -- 1.5.1. Oxygen Corrosion -- 1.5.2. Prevention -- 1.5.3. Carbonic Acid Corrosion -- 1.5.4. Mechanism -- 1.5.5. Prevention -- 1.5.6. Cavitation Erosion -- 1.5.7. Erosion Corrosion -- 1.5.8. Ammonia Corrosion -- 1.5.9. Galvanic Corrosion -- 2. Corrosion in Warm and Hot Water Heating Systems -- 2.1. Oxygen Corrosion -- 2.1.1. Mechanism -- 2.1.2. Deposition of Magnetite -- 2.1.3. Deposit Corrosion -- 2.1.4. Galvanic Corrosion -- 2.1.5. Corrosion by Chemicals -- 2.1.6. Cavitation Erosion -- 2.1.7. Fire-Side Corrosion -- 2.1.8. Corrosion Prevention -- By Constructive Measures -- By Makeup Treatment -- By Water Conditioning. , 3. Corrosion in Cooling Water Systems -- 3.1. Types of Systems -- 3.1.1. Once-Through Cooling Water Systems -- 3.2. Open (Evaporative) Recirculating Cooling Water Systems With Cooling Tower -- 3.3. Corrosion Problems in Cooling Water Systems -- 3.3.1. Oxygen Corrosion -- 3.3.2. Underdeposit Corrosion -- 3.4. Microbiologically Induced Corrosion -- 3.5. Corrosion by Too High or Too Low pH -- 3.6. Corrosion by Excessive Chloride Content -- 3.7. Erosion Corrosion -- 3.7.1. Cavitation (Erosion and Corrosion) -- 3.7.2. Galvanic Corrosion -- 3.7.3. Crevice Corrosion -- 3.7.4. Stress Corrosion Cracking -- 3.8. Corrosion Prevention and Corrosion Control in Cooling Water Systems -- 3.8.1. By Material Selection -- 3.8.2. By Design -- 3.8.3. By Makeup Treatment and Water Conditioning -- 3.8.4. By Maintenance -- 4. Corrosion in Cold and Hot Tap Water Systems -- 4.1. Galvanic Corrosion -- 4.1.1. Prevention -- 4.2. Oxygen and Carbonic Acid Corrosion -- 4.2.1. Prevention -- 4.3. Underdeposit Corrosion -- 4.3.1. Prevention -- 4.4. Sulfide Corrosion -- 4.4.1. Prevention -- 4.5. Erosion (Corrosion) and Cavitation Erosion -- 4.5.1. Prevention -- 4.6. Other Corrosion Causes -- 4.6.1. Prevention -- Glossary of Terms -- Qualifications and Compositions of the Stainless Steels -- Corrosion Atlas Series -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.27.001 -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.28.001 -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.28.002 -- Corrosion Atlas -- Contributed By: Rodolfo Perticarrari -- Case History 01.03.27.001 -- Corrosion Atlas -- Contributed By: Maros Halama -- Case History 01.03.35.001 -- Corrosion Atlas -- Contributed By: Benz Merchan -- Case History 01.05.18.001 -- Corrosion Atlas -- Contributed By: Benz Merchan. , Case History 01.05.18.002.
    Additional Edition: Print version: Khoshnaw, Fuad Corrosion Atlas Case Studies San Diego : Elsevier,c2023 ISBN 9780443132285
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Amsterdam, Netherlands :Elsevier,
    UID:
    edocfu_9961311133302883
    Format: 1 online resource (232 pages)
    Edition: First edition.
    ISBN: 0-443-13227-5
    Series Statement: Corrosion Atlas Series
    Content: Corrosion Atlas Case Studies: 2023 Edition gives engineers expedient daily corrosion solutions for common industrial equipment no matter the industry. Providing a purely operational level view, this reference is designed as concise case studies categorized by material and includes content surrounding the phenomenon, equipment appearance supported by a color image, time of service, conditions, cause and suggested remedies. Additional reference listings for deeper understanding beyond the practical elements are also included. Rounding out with an introductory foundational layer of corrosion principles critical to all engineers, this book delivers the daily tool required for engineers today to solve their equipment’s corrosion problems.
    Note: Intro -- Corrosion Atlas Case Studies: 2023 Edition -- Copyright -- Contents -- About the Editor -- Corrosion Atlas Editorial Board -- Aisha H. Al-Moubaraki, Associate Professor, University of Jeddah, Saudi Arabia -- Talal A. Aljohani, Professor, King Abdulaziz City for Science and Technology, Saudi Arabia -- Raymundo Case, Professor, Texas AandM University, United States -- Nafiseh Ebrahimi, PhD, PEng, Research Officer, National Research Council Canada, Canada -- Mascha van Hofweegen, Senior Consultant, KWA Bedrijfsadviseurs BV, the Netherlands -- Hideyuki Kanematsu, PhD, FASM, FIMF, Professor, National Institute of Technology, Suzuka College, Japan -- Sandra Le Manchet, PhD, Mechanical Engineer, France -- Sanja Martinez, PhD, Professor, University of Zagreb, Croatia -- Mohsen Mazraeh, SIMCO Technologies Inc. Dubai Branch, Dubai -- Raul B. Rebak, PhD, Corrosion Engineer, United States -- Torben Lund Skovhus, PhD, Docent and Project Manager, VIA University College, Denmark -- Esra Ilhan-Sungur, PhD, Professor, Istanbul University, Turkey -- Annelise Zeemann, DSc, TECMETAL Technical Director, Brazil -- Hua Zhang, Professor, Beijing Institute of Petrochemical Technology, China -- Contributors Bios -- Preface to the Third Volume -- User Guide for the Corrosion Atlas -- Corrosion Atlas Volume III Classification of the Case Histories -- Introduction -- Part I: General Aspects of Corrosion, Corrosion Control, and Corrosion Prevention -- 1. Definition of Corrosion -- 2. The Consequences of Corrosion -- 2.1. Technical Consequences -- 2.2. Economic Consequences -- 2.3. Social Consequences -- 3. The Theory of Electrochemical Corrosion -- 3.1. Oxidation and Reduction -- 3.2. Polarization and Depolarization -- 3.3. The Corrosion Potential -- 3.4. The E/pH Diagram (Pourbaix Diagram) -- 3.5. Corrosion Rate and Polarization Diagrams -- 3.6. Closing Remarks. , 4. Forms of Electrochemical Corrosion -- 4.1. Uniform Corrosion -- 4.2. Localized Corrosion -- 4.3. Galvanic Corrosion -- 4.4. Crevice Corrosion -- 4.5. Pitting Corrosion -- 4.6. Intergranular Corrosion -- 4.7. Selective Leaching (Dealloying) -- 4.8. Impact Corrosion -- 4.8.1. Erosion Corrosion -- 4.8.2. Impingement Corrosion -- 4.8.3. Cavitation Corrosion -- 4.8.4. Fretting Corrosion -- 4.9. Stress Corrosion Cracking and Corrosion Fatigue -- 5. Failure Analysis and Diagnosis -- 6. Corrosion Control -- 7. Corrosion Prevention at the Design Stage -- 7.1. General -- 7.2. Factors Influencing Selection of Materials and Corrosion Resistance -- 7.3. Design Rules -- Part II: Corrosion Topics -- 1. Cavitation Damage -- 1.1. Occurrence -- 1.2. Prevention -- 2. Erosion Corrosion -- 2.1. Occurrence -- 2.1.1. Uniform Attack -- 2.1.2. Local Attack -- 2.2. Prevention -- 3. Exfoliation Corrosion -- 3.1. Occurrence -- 3.2. Prevention -- 4. Fatigue and Corrosion Fatigue -- 4.1. Influencing Factors -- 4.1.1. Installations -- 4.1.2. Stresses -- 4.1.3. Environment -- 4.1.4. Metal Composition -- 4.2. Prevention -- 5. Filiform Corrosion -- 5.1. Mechanism -- 5.2. Prevention -- 6. Galvanic Corrosion -- 6.1. Conditions for the Occurrence of Galvanic Corrosion -- 6.2. Factors That Can Affect the Rate of Galvanic Corrosion -- 6.2.1. The Polarization Effect -- 6.2.2. The Electrolyte -- 6.2.3. Aeration and Flow Rate -- 6.2.4. The Surface Area Ratio -- 6.3. Forms of Galvanic Corrosion -- 6.3.1. Contact Corrosion -- 6.3.2. Deposition Corrosion -- 6.3.3. Reversal of Potential -- 6.3.4. Thermogalvanic Corrosion -- 6.4. Prevention -- 7. High-Temperature Corrosion -- 7.1. Carburization -- 7.1.1. Metal Dusting -- 7.2. Nitriding -- 7.3. High-Temperature Oxidation -- 7.4. Sulfidation -- 7.4.1. Hot Corrosion -- 7.4.2. Sulfur Corrosion -- 8. Hydrogen Damage. , 8.1. High-Temperature Hydrogen Attack -- 8.1.1. Occurrence -- 8.1.2. Prevention -- 8.2. Hydride Embrittlement -- 8.2.1. Occurrence -- 8.2.2. Prevention -- 8.3. Hydrogen Blistering -- 8.3.1. Occurrence -- 8.3.2. Prevention -- 8.4. Hydrogen Embrittlement -- 8.4.1. Occurrence -- 8.4.2. Prevention -- 8.5. Hydrogen Stress Cracking -- 8.5.1. Occurrence -- 8.5.2. Prevention -- 9. Microbiologically Induced Corrosion -- 9.1. Corrosion Phenomena -- 9.2. Corrosion of Carbon Steel by Sulfate-Reducing Bacteria -- 9.2.1. Occurrence -- 9.2.2. Mechanism -- 9.2.3. Prevention and Control -- 9.3. Corrosion of Stainless Steel by Iron Bacteria -- 9.3.1. Appearance -- 9.3.2. Occurrence -- 9.3.3. Mechanism -- 9.3.4. Prevention -- 9.4. Corrosion of Concrete by Sulfur Bacteria -- 9.4.1. Mechanism -- 9.4.2. Prevention -- 9.5. Identification of Microbiologically Induced Corrosion -- 10. Pitting and Crevice Corrosion of Stainless Steel -- 10.1. Pitting -- 10.2. Crevice Corrosion -- 10.2.1. Driving Factors -- 10.2.2. Testing -- 10.2.3. The Prevention of Pitting and Crevice Corrosion in Stainless Steel -- 11. Selective Leaching -- 11.1. Dezincification -- 11.1.1. Driving Factors -- 11.1.2. Prevention -- 11.2. Graphitic Corrosion -- 11.2.1. Causes -- 11.2.2. External Characteristics -- 11.2.3. Prevention -- 12. Stress Corrosion Cracking -- 12.1. Caustic Stress Corrosion Cracking of Carbon Steel -- 12.1.1. Occurrence -- 12.1.2. Prevention -- 12.2. Chloride Stress Corrosion Cracking of Stainless Steel -- 12.2.1. Occurrence -- 12.2.2. Prevention -- 12.3. Ammonia Stress Corrosion Cracking in Copper Alloys -- 12.3.1. Occurrence -- 12.3.2. Prevention -- 12.4. Stress Cracking in Plastics -- 13. Weld Decay and Knife-Line Attack in Stainless Steel -- 13.1. Weld Decay -- 13.2. Knife-Line Attack -- 13.2.1. Prevention -- Part III: Corrosion in Water-Bearing Systems. , 1. Corrosion in Boiler Systems -- 1.1. Corrosion in Feedwater Systems -- 1.1.1. Oxygen Corrosion in Line Work and Deaerator -- 1.1.2. Cavitation Erosion, Erosion Corrosion, and Graphitization of Impellers -- 1.1.3. Selective Leaching -- 1.1.4. Cracking in Deaerators -- 1.2. Water-Side Corrosion in Boilers -- 1.2.1. Oxygen Corrosion -- 1.2.2. Caustic Corrosion -- 1.2.3. Acid Corrosion -- 1.2.4. Hydrogen Attack -- 1.2.5. Erosion Corrosion -- 1.2.6. Chelant Corrosion -- 1.2.7. Heat-Flux Corrosion -- 1.2.8. Liquid Metal Embrittlement -- 1.2.9. Steam Blanketing -- 1.2.10. Corrosion by Overheating -- 1.3. Fire-Side Corrosion in Boilers -- 1.3.1. Oil-Ash and Coal-Ash Corrosion -- 1.3.2. Prevention -- 1.3.3. Dew-Point Corrosion -- 1.3.4. Dew-Point Corrosion During Service -- 1.3.5. Prevention -- 1.3.6. Dew-Point Corrosion During Idle Periods -- 1.3.7. Prevention -- 1.3.8. Erosion and Erosion Corrosion -- 1.3.9. Soot-Blowers -- 1.3.10. Leaking Tubes -- 1.3.11. Fly-Ash -- 1.3.12. Design Errors -- 1.4. Corrosion in Steam Systems -- 1.4.1. Erosion (Corrosion) -- 1.4.2. Prevention -- 1.4.3. Caustic Stress Corrosion Cracking -- 1.4.4. Acid Corrosion -- 1.4.5. Excessive Magnetite Formation -- 1.5. Corrosion in Condensate Systems -- 1.5.1. Oxygen Corrosion -- 1.5.2. Prevention -- 1.5.3. Carbonic Acid Corrosion -- 1.5.4. Mechanism -- 1.5.5. Prevention -- 1.5.6. Cavitation Erosion -- 1.5.7. Erosion Corrosion -- 1.5.8. Ammonia Corrosion -- 1.5.9. Galvanic Corrosion -- 2. Corrosion in Warm and Hot Water Heating Systems -- 2.1. Oxygen Corrosion -- 2.1.1. Mechanism -- 2.1.2. Deposition of Magnetite -- 2.1.3. Deposit Corrosion -- 2.1.4. Galvanic Corrosion -- 2.1.5. Corrosion by Chemicals -- 2.1.6. Cavitation Erosion -- 2.1.7. Fire-Side Corrosion -- 2.1.8. Corrosion Prevention -- By Constructive Measures -- By Makeup Treatment -- By Water Conditioning. , 3. Corrosion in Cooling Water Systems -- 3.1. Types of Systems -- 3.1.1. Once-Through Cooling Water Systems -- 3.2. Open (Evaporative) Recirculating Cooling Water Systems With Cooling Tower -- 3.3. Corrosion Problems in Cooling Water Systems -- 3.3.1. Oxygen Corrosion -- 3.3.2. Underdeposit Corrosion -- 3.4. Microbiologically Induced Corrosion -- 3.5. Corrosion by Too High or Too Low pH -- 3.6. Corrosion by Excessive Chloride Content -- 3.7. Erosion Corrosion -- 3.7.1. Cavitation (Erosion and Corrosion) -- 3.7.2. Galvanic Corrosion -- 3.7.3. Crevice Corrosion -- 3.7.4. Stress Corrosion Cracking -- 3.8. Corrosion Prevention and Corrosion Control in Cooling Water Systems -- 3.8.1. By Material Selection -- 3.8.2. By Design -- 3.8.3. By Makeup Treatment and Water Conditioning -- 3.8.4. By Maintenance -- 4. Corrosion in Cold and Hot Tap Water Systems -- 4.1. Galvanic Corrosion -- 4.1.1. Prevention -- 4.2. Oxygen and Carbonic Acid Corrosion -- 4.2.1. Prevention -- 4.3. Underdeposit Corrosion -- 4.3.1. Prevention -- 4.4. Sulfide Corrosion -- 4.4.1. Prevention -- 4.5. Erosion (Corrosion) and Cavitation Erosion -- 4.5.1. Prevention -- 4.6. Other Corrosion Causes -- 4.6.1. Prevention -- Glossary of Terms -- Qualifications and Compositions of the Stainless Steels -- Corrosion Atlas Series -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.27.001 -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.28.001 -- Corrosion Atlas -- Contributed By: Mascha van Hofweegen -- Case History 01.01.28.002 -- Corrosion Atlas -- Contributed By: Rodolfo Perticarrari -- Case History 01.03.27.001 -- Corrosion Atlas -- Contributed By: Maros Halama -- Case History 01.03.35.001 -- Corrosion Atlas -- Contributed By: Benz Merchan -- Case History 01.05.18.001 -- Corrosion Atlas -- Contributed By: Benz Merchan. , Case History 01.05.18.002.
    Additional Edition: Print version: Khoshnaw, Fuad Corrosion Atlas Case Studies San Diego : Elsevier,c2023 ISBN 9780443132285
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780443132186?
Did you mean 9780443132223?
Did you mean 9780443132865?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages