Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    UID:
    almahu_9949983841502882
    Umfang: 1 online resource (528 pages)
    Ausgabe: First edition.
    ISBN: 9780443133916
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Nanoclay-based Sustainable Materials -- Copyright Page -- Contents -- List of contributors -- 1 Nanoclays, classification, and their properties -- 1.1 Introduction -- 1.2 Structural classification of clays -- 1.2.1 Layered chain structures -- 1.2.2 Rolled-layered structure -- 1.3 Structural organization of nanoclay -- 1.4 Noncrystalline nanoclays -- 1.5 Structure and properties of nanoclay-polymer composites -- 1.6 Conclusion -- Acknowledgments -- References -- 2 Nanoclay-polymer composites: preparation, properties, and applications -- 2.1 Introduction -- 2.1.1 Types and structural features of clays -- 2.1.1.1 Preparation of clay-polymer nanocomposites -- 2.1.1.1.1 Solution casting -- 2.1.1.1.2 Epoxy-clay nanocomposites -- 2.1.1.1.3 Polyimide-clay hybrid -- 2.1.1.1.4 Polystyrene-clay nanocomposite -- 2.1.1.1.5 Silicate-reinforced polysiloxane nanocomposite -- 2.1.1.1.6 Poly(acrylic acid-co-acrylamide) nanoclay-polymer composite -- 2.1.1.1.7 Clay-biopolymer nanocomposites -- 2.1.1.1.8 Magnetic clay-polymer nanocomposites -- 2.1.1.2 Characterization of clay-polymer nanocomposites -- 2.1.1.2.1 X-ray diffraction -- 2.1.1.3 Nuclear magnetic resonance spectroscopy -- 2.1.1.4 Fourier transform infrared spectroscopy -- 2.2 Thermogravimetric analysis -- 2.3 Differential scanning calorimetry -- 2.3.1 Transmission electron microscope -- 2.3.2 Applications -- 2.4 Conclusion -- Acknowledgments -- References -- 3 Biomedical applications of nanoclays -- 3.1 Introduction -- 3.2 Nanoclay properties -- 3.2.1 Unique properties -- 3.2.1.1 Cation exchange -- 3.3 Biomedical applications -- 3.3.1 Drug delivery -- 3.3.1.1 Drug solubility -- 3.3.1.2 Controlled and sustained release -- 3.3.1.3 Targeted drug delivery -- 3.3.2 Tissue engineering -- 3.3.3 Diagnostic imaging -- 3.3.4 Wound healing -- 3.4 Biocompatibility and toxicity -- 3.4.1 In vitro studies. , 3.4.2 In vivo studies -- 3.5 Conclusion -- References -- 4 Nanoclay-based active food packaging systems and their toxicity evaluations -- List of symbols/nomenclature -- 4.1 Introduction to nanoclays -- 4.2 Nanoclays for food packaging -- 4.2.1 Montmorillonite -- 4.2.2 Laponite -- 4.2.3 Halloysite -- 4.2.4 Polymeric nanocomposites -- 4.2.5 Organic-modified nanoclays -- 4.3 Why nanoclays for food packaging? -- 4.3.1 Oxygen-scavenging nanoclays -- 4.3.2 Toxicity -- 4.4 Different methods for toxicity evaluation -- 4.4.1 In vitro nanotoxicology -- 4.4.2 Proliferation assays -- 4.4.3 Apoptosis assay -- 4.4.4 Oxidative stress assay -- 4.4.5 Genotoxicity assay -- 4.4.6 In vivo nanotoxicology -- 4.5 Conclusion and future prospective -- References -- 5 Review on the development of natural rubber/nanoclay nanocomposites -- 5.1 Introduction -- 5.2 Composition and architecture of clay -- 5.2.1 Kaolinite/kaolin -- 5.2.2 Halloysite -- 5.2.3 Montmorillonite -- 5.2.4 Laponite -- 5.2.5 Layered double hydroxide clays -- 5.2.6 Cation exchange capacity for clays -- 5.2.7 Surface modifications for clays -- 5.3 Applications of natural rubber/clay nanocomposites -- 5.3.1 Mechanical properties of clay/natural rubber nanocomposites -- 5.3.2 Gas barrier and thermal properties of clay/natural rubber nanocomposites -- Conclusions -- References -- 6 Nanoclay-reinforced polymers -- 6.1 Structure and properties of clay minerals -- 6.2 Introduction to clay-reinforced polymers -- 6.2.1 Phase-separated structure -- 6.2.2 Intercalated structure -- 6.2.3 Exfoliated structure -- 6.3 Polymer matrix materials for clay composites -- 6.4 Processing techniques for clay-reinforced polymers -- 6.4.1 Solution mixing -- 6.4.2 Melt intercalation method -- 6.4.3 In situ polymerization method -- 6.4.4 Electrospinning -- 6.5 Properties of clay-reinforced polymer composites. , 6.5.1 Mechanical properties -- 6.5.2 Thermal properties -- 6.5.3 Barrier properties -- 6.6 Applications of clay-reinforced polymers -- 6.6.1 Packaging materials -- 6.6.2 Automotive components -- 6.6.3 Building innovations -- 6.7 Future directions in clay-reinforced polymer research -- 6.8 Conclusions -- References -- 7 Advances in nanoclay-based drug delivery systems and their therapeutic potential -- 7.1 Introduction -- 7.2 Nanoclays in drug hybrid -- 7.3 Montmorillonite in drug delivery -- 7.4 Halloysite in drug delivery -- 7.5 Kaolinite in drug delivery -- 7.6 Factors affecting drug delivery -- 7.6.1 Morphology of nanoclay -- 7.6.2 Pore size of the nanoclays -- 7.6.3 Charge density and zetapotential of the nanoclays -- 7.6.4 Thermal and mechanical behavior of nanoclays -- 7.7 Conclusion -- References -- 8 The role of nanoclays on the properties and performance of soil and construction materials: a comprehensive review -- 8.1 Introduction -- 8.1.1 Nanoclays on strengthening construction materials -- 8.1.2 Nanoclays on different physical and mechanical properties -- 8.1.3 Nanoclay in stabilizing dam/embankment structures, prevention of erosion, and seepage -- 8.2 Conclusions -- Acknowledgments -- References -- 9 Nanoclay for climate change adaptation and mitigation: a critical review -- 9.1 Introduction -- 9.2 Nanoclay: properties, production, and applications -- 9.3 Occurrence and production of nanoclay -- 9.4 Natural nanoclay materials -- 9.5 Nanoclay in climate change adaptation and mitigation: an overview -- 9.6 Nanoclay polymer can enrich ecological health and quality through decontamination -- 9.7 A new solution to turn deserts green with nanoclay -- 9.7.1 Desert testing -- 9.7.2 Making earth green with liquid nanoclay -- 9.8 Nanofertilizer use for climate change dichotomy effects -- 9.9 Nanofertilizers as mitigation and adaptation strategy. , 9.10 Conclusion -- References -- 10 Nanoclays for environmental remediation : a review -- 10.1 Introduction -- 10.1.1 Occurrence and production of nanoclay -- 10.1.2 Nanoclay for environmental remediation -- 10.1.3 Prospects and implementation of nanoclay in environmental remediation and clean up -- 10.1.4 Nanoclay-based strategies -- 10.1.5 Functionalized nanoclays and their biocompatibility used in environmental remediation -- 10.1.6 Environmental remediation nanoclay technologies -- 10.1.6.1 Environmental remediation by chemical degradation -- 10.1.6.2 Environmental remediation by metals/metal oxides -- 10.1.6.3 Environmental nanosensors -- 10.1.6.4 Eco-friendly materials -- 10.1.6.5 Green production -- 10.1.6.6 Applications of nanoclays in remediation of soil -- 10.1.6.7 Applications of nanoclays in pollutant removal from water -- 10.1.6.8 Applications of nanoclays in gas emission control -- 10.1.6.9 Applications of nanoclays to prevent pollution -- 10.1.7 Sustainable applications of nanoclay for environmental remediation -- 10.2 Conclusion -- References -- 11 Sustainable processing routes to clay-polymer nanocomposites-a review -- 11.1 Introduction -- 11.2 Clays as the reinforcement -- 11.2.1 Clay structure and chemical composition -- 11.2.2 Clay properties -- 11.2.3 Clay classification -- 11.2.3.1 Kaolinite clay -- 11.2.3.2 Halloysite clays -- 11.2.3.3 Serpentine clays -- 11.2.3.4 Smectite clays -- 11.2.3.4.1 Montmorillonite -- 11.2.3.4.2 Sepiolite -- 11.2.3.4.3 Hectorite -- 11.2.3.4.4 Bentonites -- 11.2.3.4.5 Laponite -- 11.2.3.4.6 Vermiculite -- 11.2.3.4.7 Chlorite -- 11.3 Polymer nanocomposites with different clay types -- 11.3.1 Smectite clay-reinforced polymer nanocomposites -- 11.3.1.1 Montmorillonite-reinforced polymer nanocomposites -- 11.3.1.2 Laponite-reinforced polymer nanocomposites. , 11.3.1.3 Sepiolite-reinforced polymer nanocomposites -- 11.3.1.4 Bentonite-reinforced polymer nanocomposites -- 11.3.2 Kaolinite clay-reinforced polymer nanocomposites -- 11.4 Sustainable processing routes to clay-polymer nanocomposites -- 11.4.1 Conventional emulsion polymerization -- 11.4.2 In situ emulsion polymerization in presence of clay dispersion -- 11.4.3 Ultrasound-assisted emulsion polymerization -- 11.4.4 Seeded emulsion polymerization -- 11.4.5 Surfactant-free emulsion polymerization -- 11.4.5.1 Pickering emulsion polymerization -- 11.5 Polymer-clay nanocomposites via miniemulsion polymerization -- 11.6 Polymer-clay nanocomposites via controlled radical polymerization-based processes -- 11.6.1 Atom transfer radical polymerization based miniemulsion processes -- 11.6.1.1 Reversible addition-fragmentation chain transfer-assisted miniemulsion polymerization processes -- 11.7 Summary and outlook -- References -- 12 Energy storage and electrocatalytic applications of nanoclay composites -- 12.1 Introduction -- 12.2 Clay types -- 12.3 Nanoclays for electrocatalysis applications -- 12.4 Nanoclays for energy storage applications -- 12.5 Conclusions -- References -- 13 Nanoclay-based green polymeric composites: preparation and properties -- 13.1 Introduction -- 13.2 Nanoclay preparation and properties -- 13.3 Selection and modification strategies of nanoclay particles -- 13.4 Green polymeric composites and their uses -- 13.4.1 Uses of green polymeric composites -- 13.4.2 Benefits of green polymeric composites -- 13.4.3 Biodegradable or renewable polymers -- 13.4.4 Reinforcement phases -- 13.5 Representative nanoclay-based green polymeric composites -- 13.6 Key processing techniques -- 13.7 Significant characterization techniques top of form -- 13.8 Distinctive role of nanoclay in polymeric biocomposites -- 13.9 Summary -- 13.10 Future outlook. , References.
    Weitere Ausg.: Print version: Padil, Vinod V. T. Nanoclay-Based Sustainable Materials San Diego : Elsevier,c2024 ISBN 9780443133909
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    edoccha_9961630836702883
    Umfang: 1 online resource (528 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443133916
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Nanoclay-based Sustainable Materials -- Copyright Page -- Contents -- List of contributors -- 1 Nanoclays, classification, and their properties -- 1.1 Introduction -- 1.2 Structural classification of clays -- 1.2.1 Layered chain structures -- 1.2.2 Rolled-layered structure -- 1.3 Structural organization of nanoclay -- 1.4 Noncrystalline nanoclays -- 1.5 Structure and properties of nanoclay-polymer composites -- 1.6 Conclusion -- Acknowledgments -- References -- 2 Nanoclay-polymer composites: preparation, properties, and applications -- 2.1 Introduction -- 2.1.1 Types and structural features of clays -- 2.1.1.1 Preparation of clay-polymer nanocomposites -- 2.1.1.1.1 Solution casting -- 2.1.1.1.2 Epoxy-clay nanocomposites -- 2.1.1.1.3 Polyimide-clay hybrid -- 2.1.1.1.4 Polystyrene-clay nanocomposite -- 2.1.1.1.5 Silicate-reinforced polysiloxane nanocomposite -- 2.1.1.1.6 Poly(acrylic acid-co-acrylamide) nanoclay-polymer composite -- 2.1.1.1.7 Clay-biopolymer nanocomposites -- 2.1.1.1.8 Magnetic clay-polymer nanocomposites -- 2.1.1.2 Characterization of clay-polymer nanocomposites -- 2.1.1.2.1 X-ray diffraction -- 2.1.1.3 Nuclear magnetic resonance spectroscopy -- 2.1.1.4 Fourier transform infrared spectroscopy -- 2.2 Thermogravimetric analysis -- 2.3 Differential scanning calorimetry -- 2.3.1 Transmission electron microscope -- 2.3.2 Applications -- 2.4 Conclusion -- Acknowledgments -- References -- 3 Biomedical applications of nanoclays -- 3.1 Introduction -- 3.2 Nanoclay properties -- 3.2.1 Unique properties -- 3.2.1.1 Cation exchange -- 3.3 Biomedical applications -- 3.3.1 Drug delivery -- 3.3.1.1 Drug solubility -- 3.3.1.2 Controlled and sustained release -- 3.3.1.3 Targeted drug delivery -- 3.3.2 Tissue engineering -- 3.3.3 Diagnostic imaging -- 3.3.4 Wound healing -- 3.4 Biocompatibility and toxicity -- 3.4.1 In vitro studies. , 3.4.2 In vivo studies -- 3.5 Conclusion -- References -- 4 Nanoclay-based active food packaging systems and their toxicity evaluations -- List of symbols/nomenclature -- 4.1 Introduction to nanoclays -- 4.2 Nanoclays for food packaging -- 4.2.1 Montmorillonite -- 4.2.2 Laponite -- 4.2.3 Halloysite -- 4.2.4 Polymeric nanocomposites -- 4.2.5 Organic-modified nanoclays -- 4.3 Why nanoclays for food packaging? -- 4.3.1 Oxygen-scavenging nanoclays -- 4.3.2 Toxicity -- 4.4 Different methods for toxicity evaluation -- 4.4.1 In vitro nanotoxicology -- 4.4.2 Proliferation assays -- 4.4.3 Apoptosis assay -- 4.4.4 Oxidative stress assay -- 4.4.5 Genotoxicity assay -- 4.4.6 In vivo nanotoxicology -- 4.5 Conclusion and future prospective -- References -- 5 Review on the development of natural rubber/nanoclay nanocomposites -- 5.1 Introduction -- 5.2 Composition and architecture of clay -- 5.2.1 Kaolinite/kaolin -- 5.2.2 Halloysite -- 5.2.3 Montmorillonite -- 5.2.4 Laponite -- 5.2.5 Layered double hydroxide clays -- 5.2.6 Cation exchange capacity for clays -- 5.2.7 Surface modifications for clays -- 5.3 Applications of natural rubber/clay nanocomposites -- 5.3.1 Mechanical properties of clay/natural rubber nanocomposites -- 5.3.2 Gas barrier and thermal properties of clay/natural rubber nanocomposites -- Conclusions -- References -- 6 Nanoclay-reinforced polymers -- 6.1 Structure and properties of clay minerals -- 6.2 Introduction to clay-reinforced polymers -- 6.2.1 Phase-separated structure -- 6.2.2 Intercalated structure -- 6.2.3 Exfoliated structure -- 6.3 Polymer matrix materials for clay composites -- 6.4 Processing techniques for clay-reinforced polymers -- 6.4.1 Solution mixing -- 6.4.2 Melt intercalation method -- 6.4.3 In situ polymerization method -- 6.4.4 Electrospinning -- 6.5 Properties of clay-reinforced polymer composites. , 6.5.1 Mechanical properties -- 6.5.2 Thermal properties -- 6.5.3 Barrier properties -- 6.6 Applications of clay-reinforced polymers -- 6.6.1 Packaging materials -- 6.6.2 Automotive components -- 6.6.3 Building innovations -- 6.7 Future directions in clay-reinforced polymer research -- 6.8 Conclusions -- References -- 7 Advances in nanoclay-based drug delivery systems and their therapeutic potential -- 7.1 Introduction -- 7.2 Nanoclays in drug hybrid -- 7.3 Montmorillonite in drug delivery -- 7.4 Halloysite in drug delivery -- 7.5 Kaolinite in drug delivery -- 7.6 Factors affecting drug delivery -- 7.6.1 Morphology of nanoclay -- 7.6.2 Pore size of the nanoclays -- 7.6.3 Charge density and zetapotential of the nanoclays -- 7.6.4 Thermal and mechanical behavior of nanoclays -- 7.7 Conclusion -- References -- 8 The role of nanoclays on the properties and performance of soil and construction materials: a comprehensive review -- 8.1 Introduction -- 8.1.1 Nanoclays on strengthening construction materials -- 8.1.2 Nanoclays on different physical and mechanical properties -- 8.1.3 Nanoclay in stabilizing dam/embankment structures, prevention of erosion, and seepage -- 8.2 Conclusions -- Acknowledgments -- References -- 9 Nanoclay for climate change adaptation and mitigation: a critical review -- 9.1 Introduction -- 9.2 Nanoclay: properties, production, and applications -- 9.3 Occurrence and production of nanoclay -- 9.4 Natural nanoclay materials -- 9.5 Nanoclay in climate change adaptation and mitigation: an overview -- 9.6 Nanoclay polymer can enrich ecological health and quality through decontamination -- 9.7 A new solution to turn deserts green with nanoclay -- 9.7.1 Desert testing -- 9.7.2 Making earth green with liquid nanoclay -- 9.8 Nanofertilizer use for climate change dichotomy effects -- 9.9 Nanofertilizers as mitigation and adaptation strategy. , 9.10 Conclusion -- References -- 10 Nanoclays for environmental remediation : a review -- 10.1 Introduction -- 10.1.1 Occurrence and production of nanoclay -- 10.1.2 Nanoclay for environmental remediation -- 10.1.3 Prospects and implementation of nanoclay in environmental remediation and clean up -- 10.1.4 Nanoclay-based strategies -- 10.1.5 Functionalized nanoclays and their biocompatibility used in environmental remediation -- 10.1.6 Environmental remediation nanoclay technologies -- 10.1.6.1 Environmental remediation by chemical degradation -- 10.1.6.2 Environmental remediation by metals/metal oxides -- 10.1.6.3 Environmental nanosensors -- 10.1.6.4 Eco-friendly materials -- 10.1.6.5 Green production -- 10.1.6.6 Applications of nanoclays in remediation of soil -- 10.1.6.7 Applications of nanoclays in pollutant removal from water -- 10.1.6.8 Applications of nanoclays in gas emission control -- 10.1.6.9 Applications of nanoclays to prevent pollution -- 10.1.7 Sustainable applications of nanoclay for environmental remediation -- 10.2 Conclusion -- References -- 11 Sustainable processing routes to clay-polymer nanocomposites-a review -- 11.1 Introduction -- 11.2 Clays as the reinforcement -- 11.2.1 Clay structure and chemical composition -- 11.2.2 Clay properties -- 11.2.3 Clay classification -- 11.2.3.1 Kaolinite clay -- 11.2.3.2 Halloysite clays -- 11.2.3.3 Serpentine clays -- 11.2.3.4 Smectite clays -- 11.2.3.4.1 Montmorillonite -- 11.2.3.4.2 Sepiolite -- 11.2.3.4.3 Hectorite -- 11.2.3.4.4 Bentonites -- 11.2.3.4.5 Laponite -- 11.2.3.4.6 Vermiculite -- 11.2.3.4.7 Chlorite -- 11.3 Polymer nanocomposites with different clay types -- 11.3.1 Smectite clay-reinforced polymer nanocomposites -- 11.3.1.1 Montmorillonite-reinforced polymer nanocomposites -- 11.3.1.2 Laponite-reinforced polymer nanocomposites. , 11.3.1.3 Sepiolite-reinforced polymer nanocomposites -- 11.3.1.4 Bentonite-reinforced polymer nanocomposites -- 11.3.2 Kaolinite clay-reinforced polymer nanocomposites -- 11.4 Sustainable processing routes to clay-polymer nanocomposites -- 11.4.1 Conventional emulsion polymerization -- 11.4.2 In situ emulsion polymerization in presence of clay dispersion -- 11.4.3 Ultrasound-assisted emulsion polymerization -- 11.4.4 Seeded emulsion polymerization -- 11.4.5 Surfactant-free emulsion polymerization -- 11.4.5.1 Pickering emulsion polymerization -- 11.5 Polymer-clay nanocomposites via miniemulsion polymerization -- 11.6 Polymer-clay nanocomposites via controlled radical polymerization-based processes -- 11.6.1 Atom transfer radical polymerization based miniemulsion processes -- 11.6.1.1 Reversible addition-fragmentation chain transfer-assisted miniemulsion polymerization processes -- 11.7 Summary and outlook -- References -- 12 Energy storage and electrocatalytic applications of nanoclay composites -- 12.1 Introduction -- 12.2 Clay types -- 12.3 Nanoclays for electrocatalysis applications -- 12.4 Nanoclays for energy storage applications -- 12.5 Conclusions -- References -- 13 Nanoclay-based green polymeric composites: preparation and properties -- 13.1 Introduction -- 13.2 Nanoclay preparation and properties -- 13.3 Selection and modification strategies of nanoclay particles -- 13.4 Green polymeric composites and their uses -- 13.4.1 Uses of green polymeric composites -- 13.4.2 Benefits of green polymeric composites -- 13.4.3 Biodegradable or renewable polymers -- 13.4.4 Reinforcement phases -- 13.5 Representative nanoclay-based green polymeric composites -- 13.6 Key processing techniques -- 13.7 Significant characterization techniques top of form -- 13.8 Distinctive role of nanoclay in polymeric biocomposites -- 13.9 Summary -- 13.10 Future outlook. , References.
    Weitere Ausg.: Print version: Padil, Vinod V. T. Nanoclay-Based Sustainable Materials San Diego : Elsevier,c2024 ISBN 9780443133909
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443131905?
Meinten Sie 9780443103919?
Meinten Sie 9780443133008?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz