Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier Inc.,
    UID:
    almahu_9949985005302882
    Umfang: 1 online resource (234 pages)
    ISBN: 9780443191442 , 9780443135149 , 0443135142
    Serie: Interface Transmission Tutorial Book Series
    Inhalt: Resonance: Long-Lived Waves, a new volume in the Interface Transmission Tutorial Book series, introduces long-life resonance properties for telecommunications. The book's authors review the general analysis methods of interface transmission, giving many examples and applying these methods to telecommunications systems (materials and devices). Each chapter introduces and defines the long-lived resonances, their path states and phase shifts, and applications. This book is suitable for materials scientists and engineers in academia and R&D, and may also be appropriate for applied physicists.
    Anmerkung: Front Cover -- Resonance -- Copyright -- Contents -- Preface -- Acknowledgments -- 1 State phase, rules, and theorems -- 1.1 Introduction -- 1.2 Finite, semi-infinite, and infinite systems -- 1.3 State and resonance -- 1.4 State phase -- 1.4.1 State phase shift -- 1.4.2 General state phase -- 1.4.3 Discrete final states -- 1.4.4 Bulk state phase shift -- 1.4.5 Comments -- 1.5 General rules and theorems -- 1.5.1 Eigenfunction continuity rules -- 1.5.1.1 Rule 1 -- 1.5.1.2 Rule 2 -- 1.5.2 General theorems -- 1.5.2.1 BIC state theorem -- 1.5.2.2 SIBIC state theorem -- 1.5.2.3 Long-lived resonance theorem -- 1.5.2.4 State activation theorem -- 1.6 Outlook -- References -- 2 Photonic open loops -- 2.1 Introduction -- 2.2 Open loops -- 2.2.1 Open-loop basic elements -- 2.2.1.1 Infinite open loop -- 2.2.1.2 Semi-infinite open loop -- 2.2.1.3 Finite open loop -- 2.2.2 One finite open loop -- 2.2.3 Two finite open loops -- 2.2.4 N finite open loops -- 2.3 Comb systems -- 2.3.1 A finite comb system with two teeth and three teeth at its two ends -- 2.3.1.1 Finite four teeth comb -- 2.3.1.2 Finite six-tooth comb -- 2.3.1.3 Finite eight-tooth comb -- 2.3.1.4 Finite ten teeth comb -- 2.3.1.5 Finite twelve-tooth comb -- 2.3.1.6 Finite fourteen-tooth comb -- 2.3.1.7 Finite sixteen-tooth comb -- 2.3.1.8 Generalization of this system with M interface points -- 2.3.2 A finite comb system with N teeth at M equidistant interface points -- 2.3.2.1 Infinite comb systems: N teeth L at a distance 2L of their nearest neighbors -- 2.3.2.2 A finite comb with N teeth at M equidistant interface points -- For M=2 -- For M=3 -- For M=4 -- Final path states for any value of M -- 2.3.3 Long-lived resonances: comb with two teeth per port -- 2.3.3.1 A generic comb system with two tuning parameters -- 2.3.3.2 Comb with six teeth -- The finite comb with six teeth. , The unperturbed finite system -- The perturbed finite system -- One input central port and three output ports -- One input and one output central port -- One input central port and one output port at each comb end -- One output signal per output port -- Two output signals per output port -- One input port at one comb end and one output port at the other comb end -- Other possible lead connections -- 2.3.3.3 Comb with 5x2 teeth -- The finite comb with ten teeth -- The unperturbed system -- The perturbed system -- One input and one output central port -- One input central port and four different noncentral output ports -- 2.3.3.4 Generalizations -- 2.4 Outlook -- References -- 3 One photonic closed loop -- 3.1 Introduction -- 3.2 One closed loop and stubs -- 3.2.1 Basic closed-loop elements -- 3.2.2 One closed loop L and one stub L3 -- 3.2.2.1 Long-lived resonance expressions for any values of L3 and L -- 3.2.2.2 Long-lived resonances without stub (L3=0) -- 3.2.2.3 Long-lived resonances for L3 equal or close to L/4 -- 3.2.2.4 Long-lived resonances for L3 equal or close to L/2 -- 3.2.2.5 Long-lived resonances for L3 equal or close to 3L/4 -- 3.2.2.6 Long-lived resonances for L3 equal or close to L -- 3.2.3 One closed loop L and several stubs -- 3.2.3.1 One closed loop L and two stubs (L/2,L/2) -- 3.2.3.2 One closed loop L and two stubs L/2+δ and L/2-δ -- 3.2.3.3 One closed loop (L) and two stubs L/4+δ and L/4-δ -- 3.2.3.4 One closed loop (L) and three stubs L/4+δ, L/4, and L/4-δ -- 3.3 Simultaneous cross transmissions and disentanglement -- 3.4 Outlook -- Acknowledgments -- References -- 4 Two photonic closed loops -- 4.1 Introduction -- 4.2 Two tangent closed loops -- 4.2.1 General results -- 4.2.2 Two identical tangent loops L -- 4.2.3 Two tangent closed loops L1 and L2 -- 4.3 Two tangent closed loops and stubs. , 4.3.1 Two closed loops L1 and L2 and two stubs L1/4 and L2/4 -- 4.3.1.1 General results -- 4.3.1.2 Two identical tangent closed loops and two identical L/4 stubs -- 4.3.2 Two closed loops L+δ and L-δ and two stubs L/4+δ/4 and L/4-δ/4 -- 4.3.3 Two closed loops L+δ1 and L-δ1 and two stubs L/2+δ2 and L/2-δ2 -- 4.4 Outlook -- References -- 5 Photonic two-port closed loop -- 5.1 Introduction -- 5.2 Closed-loop states -- 5.3 Final system states -- 5.3.1 BIC and SIBIC states -- 5.3.2 Bulk state phase shift and state densities -- 5.4 Transmission -- 5.4.1 The transmission coefficient and the hybrid long-lived resonances -- 5.4.2 Transmission phase and phase time -- 5.5 States and transmission -- 5.6 Stub hybrid resonances -- 5.6.1 A general system -- 5.6.2 Identical stubs L3=L4 -- 5.6.2.1 Identical stubs L3=L4=L/2 -- 5.6.2.2 Identical stubs L3=L4=L/4 -- 5.7 Cross-transmission -- 5.7.1 Cross-transmissions for any symmetric two-port system -- 5.7.2 Cross-transmissions for the two-port closed loop -- 5.7.3 Stub improved cross-transmissions -- 5.8 Outlook -- Acknowledgments -- References -- 6 Photonic spheres -- 6.1 Introduction -- 6.2 States of a two interface point sphere -- 6.3 N closed loops: two tangent interface points and one port -- 6.3.1 BIC and SIBIC states -- 6.3.2 Long-lived transmission resonances in function of N -- 6.4 Long-lived transmission resonances for N=2: one port -- 6.4.1 Two closed loops of length L -- 6.4.2 Two closed loops L1=L+δ, L2=L-δ and stubs L1/4, L2/4 -- 6.4.3 Two closed loops (4 different parts): one L/4 stub -- 6.4.4 Two closed loops (4 different parts): stubs L/4 and L/8 -- 6.5 N closed loops: two tangent interface points and two ports -- 6.5.1 BIC and quasi-SIBIC states -- 6.5.2 Long-lived transmission resonances as functions of N -- 6.6 Long-lived transmission resonances for N=2: two ports -- 6.7 Outlook -- References. , 7 Photonic triangular pyramid -- 7.1 Introduction -- 7.2 Triangular pyramid states -- 7.2.1 Response function elements -- 7.2.2 States of the pyramid -- 7.3 The pyramid with two leads: one port -- 7.3.1 BIC and SIBIC states -- 7.3.2 Transmission, transmission phase, and state phase shift -- 7.3.3 The one port long-lived resonances -- 7.3.3.1 The long-lived resonances induced by two C(L/2)=0 and three S(L/2)=0 BIC states -- 7.3.3.2 The long-lived resonances induced by the two 3C=-1 BIC states -- 7.3.3.3 The long-lived resonances induced by all BIC states -- 7.4 The pyramid with two leads: two ports -- 7.4.1 BIC and SIBIC states -- 7.4.2 Transmission, transmission phase, and state phase shift -- 7.4.3 The two-port long-lived resonances -- 7.4.3.1 The two-port long-lived resonances induced by pyramid edge length modifications -- 7.4.3.2 The two-port long-lived resonances induced by pyramid edge length modifications and one stub addition at a nonport site -- 7.4.3.3 The two-port long-lived resonances induced by pyramid edge length modifications and two-port stub additions -- 7.5 Outlook -- References -- 8 Square pyramid: one summit port -- 8.1 Introduction -- 8.2 Square pyramid states -- 8.2.1 Response function: interface elements -- 8.2.2 States of the square pyramid -- 8.2.2.1 Eigenstates -- 8.2.2.2 Forced states with eigenvector robust zeros -- 8.3 The pyramid with one summit port -- 8.3.1 BIC and SIBIC states -- 8.3.2 Transmission, state phase shift, and VADOS -- 8.3.3 Transmission phase and phase time -- 8.3.4 The long-lived resonances -- 8.3.4.1 The theorem predictions -- 8.3.4.2 Stub L/4 additions -- 8.3.4.3 Pyramid edge length modifications -- 8.3.4.4 Pyramid edge length modifications and L/4 stub additions -- 8.4 State and particle shifts, collapses, and sensing -- 8.5 Outlook -- References -- 9 Generalizations -- 9.1 Introduction. , 9.2 Other simple system geometries -- 9.2.1 Open-loop chains -- 9.2.2 Closed-loop chains -- 9.2.3 Hexagons -- 9.2.4 Squares and cubes -- 9.2.5 Square pyramids -- 9.2.6 Many-port systems -- 9.3 Other generalizations -- 9.3.1 Composite material systems -- 9.3.2 Long-wavelength electronic waves -- 9.3.3 Plasmonic waves -- 9.3.4 Elastic waves -- 9.3.5 Polaritonic waves -- 9.3.6 Spin waves -- 9.3.7 Atomic and continuous material edge states -- 9.3.8 Simulations and state number conservations -- 9.3.9 Exact models versus small deformation ones -- 9.3.10 The attenuation effects -- 9.4 Outlook -- References -- Index -- Back Cover.
    Weitere Ausg.: Print version: Dobrzyński, Leonard Resonance San Diego : Elsevier,c2023
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443135194?
Meinten Sie 9780443135859?
Meinten Sie 9780443135309?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz