Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    UID:
    almahu_9950000950202882
    Format: 1 online resource (759 pages)
    Edition: First edition.
    ISBN: 9780443135309 , 0443135304
    Note: Front Cover -- Bio-polymerized Sulfur for Sustainable Practice in Applied Sciences and Engineering -- Copyright Page -- Dedication -- Contents -- About the authors -- Preface -- 1 Polymerized sulfur contribution to circular economy -- 1.1 Introduction -- 1.2 Sustainability challenges -- 1.3 Circular economy -- 1.4 Polymerized sulfur and circular economy -- 1.4.1 Polymerized sulfur in infrastructures -- 1.4.2 Polymerized sulfur in the construction industry -- 1.4.3 Polymerized sulfur in ground improvements -- 1.4.4 Polymerized sulfur in road pavement industry -- 1.4.5 Polymerized sulfur in the agriculture industry -- 1.4.6 Polymerized sulfur in waste treatment -- 1.4.7 Polymerized sulfur in the production of highly functional materials -- 1.5 Circular economy legislation -- 1.6 Circular economy drivers, challenges, inhibitions, and enablers -- 1.6.1 Drivers -- 1.6.2 Challenges -- 1.6.3 Inhibitions -- 1.6.4 Enablers -- 1.7 Circular economy monitoring indicators -- 1.7.1 Material and resource efficiency indicators -- 1.7.2 Waste production and management indicators -- 1.7.3 Product design and life cycle management -- 1.7.4 Business model and innovation indicators -- 1.8 Polymerized sulfur Integration into economy -- 1.9 Summary and concluding remarks -- References -- Further Reading -- 2 Sulfur global impacts and its properties -- 2.1 Introduction -- 2.2 Sources of sulfur -- 2.2.1 Natural sources of sulfur -- 2.2.1.1 Volcanic eruptions -- 2.2.1.2 Sedimentary rocks -- 2.2.1.3 Oceanic sulfur cycle -- 2.2.1.4 Sulfur cycle on Mars -- 2.2.2 Anthropogenic sources of sulfur -- 2.2.2.1 Fossil fuel combustion -- 2.2.2.2 Industrial processes -- 2.2.2.3 Agricultural practices -- 2.2.3 Examples of sulfur emissions -- 2.2.4 Reducing sulfur emissions -- 2.3 Sulfur trade -- 2.3.1 Production -- 2.3.2 Consumption -- 2.3.3 Trade -- 2.4 Sulfur utilization. , 2.4.1 Agriculture industry -- 2.4.2 Petroleum industry -- 2.4.3 Chemical industry -- 2.4.4 Food industry -- 2.4.5 Mining industry -- 2.4.6 Pharmaceutical industry -- 2.4.7 Rubber industry -- 2.4.8 Paper industry -- 2.4.9 Meat processing industry -- 2.4.10 Construction industry -- 2.5 Sulfur demand -- 2.5.1 Market demand for sulfur by industry -- 2.5.1.1 Fertilizer industry -- 2.5.1.2 Oil and gas industry -- 2.5.1.3 Other industries -- 2.5.2 Market demand for sulfur by region -- 2.5.2.1 Asia Pacific -- 2.5.2.2 North America -- 2.5.2.3 Europe -- 2.5.3 Factors affecting sulfur demand -- 2.6 Environmental and health impacts -- 2.6.1 Environmental impacts -- 2.6.1.1 Greenhouse gas emissions -- 2.6.1.2 Climate change -- 2.6.1.3 Air pollution -- 2.6.1.4 Acid rain -- 2.6.1.5 Water pollution -- 2.6.1.6 Mercury contamination -- 2.6.1.7 Fugitive emissions -- 2.6.1.8 Land use -- 2.6.1.9 Soil degradation -- 2.6.1.10 Waste disposal -- 2.6.1.11 Energy consumption -- 2.6.1.12 Water consumption -- 2.6.2 Health impacts -- 2.6.2.1 Respiratory issues -- 2.6.2.2 Eye and skin irritation -- 2.6.2.3 Neurological effects -- 2.6.2.4 Digestive problems -- 2.7 Crystal structure -- 2.8 Physical properties of sulfur -- 2.8.1 Color -- 2.8.2 Melting -- 2.8.3 Density -- 2.8.4 Solubility -- 2.8.5 Viscosity -- 2.9 Strength properties of sulfur -- 2.9.1 Surface tension -- 2.9.2 Compressive and tensile strength -- 2.9.3 Elasticity -- 2.10 Thermal properties -- 2.10.1 Sulfur forms -- 2.10.2 Thermal conductivity -- 2.10.3 Specific heat -- 2.10.4 Thermal expansion -- 2.10.5 Thermogravimetric behavior -- 2.11 Chemical properties of sulfur -- 2.11.1 Lewis electron diagram -- 2.11.2 Oxidation states -- 2.11.3 Combustion -- 2.11.4 Acid-base properties -- 2.11.5 Oxidation-reduction reactions -- 2.11.6 Chemical reactions with olefins -- 2.11.7 Polymerization -- 2.12 Biological functions. , 2.13 Summary and concluding remarks -- References -- Further reading -- 3 Bio-based polymeric materials -- 3.1 Introduction -- 3.2 Bio-based polymers -- 3.3 Vegetable oils as renewable monomers -- 3.4 Chemical composition of plant oils -- 3.5 Chemical modifications of fats and fatty acids -- 3.6 Biomass -- 3.7 Bio-oil -- 3.8 Biomass conversion technologies -- 3.8.1 Biochemical conversion -- 3.8.2 Thermochemical conversion -- 3.9 Biomass transformation mechanisms -- 3.9.1 Biomass type -- 3.9.2 Temperature -- 3.9.3 Pressure -- 3.9.4 Catalysts -- 3.9.5 Solvent -- 3.9.6 Biomass-to-solvent ratio -- 3.9.7 Residence time -- 3.10 Bio-oil composition and properties -- 3.10.1 Elemental composition -- 3.10.2 Chemical composition -- 3.10.3 Molecular weight -- 3.10.4 Boiling and distillation -- 3.10.5 Phase stability -- 3.10.6 Physical properties -- 3.10.7 Moisture content -- 3.10.8 Homogeneity -- 3.10.9 Oxidation and aging -- 3.10.10 Corrosion potential -- 3.11 Physical and chemical properties of fatty acids -- 3.11.1 Melting point -- 3.11.2 Boiling point -- 3.11.3 Density -- 3.11.4 Refractive index -- 3.11.5 Electrical conductivity -- 3.11.6 Dielectric constant -- 3.11.7 Critical micelle concentration -- 3.11.8 Solubility -- 3.12 Bio-polymer polylactic acid -- 3.13 Stability of vegetable oils -- 3.13.1 Atmospheric effect -- 3.13.2 Light effect -- 3.13.3 Temperature and humidity effects -- 3.13.4 Inorganic metals effect -- 3.14 Identification of newly formed products and long-term stability -- 3.14.1 Analytical techniques -- 3.14.1.1 Spectroscopic techniques -- 3.14.1.2 Chromatographic and mass spectrometric techniques -- 3.14.1.3 Micro gas chromatography -- 3.14.1.4 High-performance liquid chromatography -- 3.14.1.5 Solid-phase microextraction -- 3.14.1.6 SPME-GC-MS method -- 3.14.1.7 Two-dimensional gas chromatography time-of-flight mass spectrometry. , 3.14.1.8 Size exclusion chromatography -- 3.14.1.9 Electron paramagnetic resonance -- 3.14.1.10 Differential scanning calorimetry -- 3.14.2 Assessment of progress of oxidation -- 3.14.2.1 Structural indices -- 3.14.2.2 Quality indices -- 3.15 Long-term stability and service life -- 3.16 Sulfur polymerization of vegetable oil -- 3.17 Environmental issues -- 3.18 Industrial applications -- 3.18.1 Coatings and polymers -- 3.18.2 Printing inks -- 3.18.3 Lubricants -- 3.18.4 Cosmetics/pharmaceuticals -- 3.18.5 Leather processing -- 3.18.6 Surfactants -- 3.18.7 Solvents -- 3.18.8 Hydraulic fluids -- 3.18.9 Pesticide/herbicide adjuvants -- 3.18.10 Glycerin -- 3.18.11 Concrete and asphalt release agents -- 3.18.12 Dust control agent -- 3.18.13 Crayons and candles -- 3.18.14 Biodiesel fuel/lubricity additives -- 3.18.15 Heating oils -- 3.18.16 Aviation fuels -- 3.19 Summary and concluding remarks -- References -- Further reading -- 4 Bio-polymerized sulfur -- 4.1 Introduction -- 4.2 Inverse vulcanization -- 4.2.1 Without solvent and initiator -- 4.2.2 With a cross-linking agent and a catalyst -- 4.2.2.1 Types of cross-linking agents -- 4.2.2.2 Types of catalysts -- 4.2.2.3 Catalysts for vegetable oils -- 4.3 A radical-induced aryl halide-sulfur polymerization (RASP) -- 4.4 Organosulfur products -- 4.5 Copolymerization of sulfur with vegetable oils -- 4.5.1 Examples of copolymerization in the absence of catalysts -- 4.5.1.1 Palm oil -- 4.5.1.1.1 Preparation -- 4.5.1.1.2 Chemical composition -- 4.5.1.1.3 Thermal stability -- 4.5.1.2 Corn oil -- 4.5.1.2.1 Preparation -- 4.5.1.2.2 Chemical composition -- 4.5.1.2.3 Thermal stability -- 4.5.1.2.4 Thermal properties -- 4.5.1.2.5 Structural properties -- 4.5.1.3 Soybean oil -- 4.5.1.3.1 Preparation -- 4.5.1.3.2 Morphology -- 4.5.1.3.3 Chemical composition -- 4.5.1.3.4 Thermal properties. , 4.5.1.3.5 Structural properties -- 4.5.1.4 Cottonseed oil derivatives -- 4.5.1.4.1 Preparation -- 4.5.1.4.2 Chemical composition -- 4.5.1.4.3 Physical and mechanical properties -- 4.5.1.5 Mixture of sunflower, olive, and linseed oils -- 4.5.1.5.1 Preparation -- 4.5.1.5.2 Chemical composition -- 4.5.1.5.3 Morphology -- 4.5.1.5.4 Solubility -- 4.5.1.5.5 Thermal stability -- 4.5.1.6 Algae oil -- 4.5.1.6.1 Preparation -- 4.5.1.6.2 Chemical composition -- 4.5.1.6.3 Structural property -- 4.5.1.6.4 Thermal property -- 4.5.2 Copolymerization with a catalyst -- 4.5.2.1 Oleic acid -- 4.5.2.1.1 Preparation -- 4.5.2.1.2 Chemical composition -- 4.5.2.1.3 Thermal stability -- 4.5.2.1.4 Mechanical property -- 4.5.2.2 Rubber seed oil -- 4.5.2.2.1 Preparation -- 4.5.2.2.2 Chemical composition -- 4.5.2.2.3 Thermal stability -- 4.5.2.2.4 Thermal properties -- 4.5.2.2.5 Structural properties -- 4.5.2.3 Canola, rice bran, and caster oils -- 4.5.2.3.1 Preparation -- 4.5.2.3.2 Chemical composition -- 4.5.2.3.3 Thermal stability -- 4.5.2.3.4 Thermal properties -- 4.5.2.4 Cotton seed oil -- 4.5.2.4.1 Preparation -- 4.5.2.4.2 Morphology -- 4.5.2.4.3 Chemical composition -- 4.5.2.4.4 Physical and thermal properties -- 4.5.2.4.5 Thermal stability -- 4.5.2.4.6 Thermal property -- 4.6 Characteristics of poly(S-r-bio-based monomers) -- 4.6.1 Color -- 4.6.2 Solubility -- 4.6.3 Molecular weight -- 4.6.4 Chemical composition and structure -- 4.6.5 Morphology -- 4.6.6 Thermal stability -- 4.6.7 Mechanical properties -- 4.6.8 Elasticity -- 4.7 Polymerization conditions -- 4.7.1 High temperatures -- 4.7.2 Low temperatures -- 4.7.3 Room temperature -- 4.8 Summary and concluding remarks -- References -- Further reading -- 5 Greening building construction: The emerging frontier of bio-polymerized sulfur -- 5.1 Introduction -- 5.2 Sulfur allotropes -- 5.3 Sulfur polymerization processes. , 5.3.1 Microbial oxidation.
    Additional Edition: ISBN 9780443135293
    Additional Edition: ISBN 0443135290
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780443135002?
Did you mean 9780443135149?
Did you mean 9780443135200?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages