UID:
edoccha_9961432080502883
Format:
1 online resource (459 pages)
Edition:
First edition.
ISBN:
9780443135361
Series Statement:
Nanobiotechnology for Plant Protection Series
Note:
Front Cover -- Nanofertilizer Synthesis -- Copyright Page -- Contents -- List of contributors -- Series preface -- Preface -- 1 A comprehensive guide to nano-based fertilizers: types, production techniques, and properties -- 1.1 Introduction -- 1.2 Types of nanofertilizers -- 1.2.1 Metal-based nanofertilizers -- 1.2.1.1 Nitrogen nanofertilizers -- 1.2.1.2 Phosphorus nanofertilizers -- 1.2.1.3 Potassium nanofertilizers -- 1.2.1.4 Zinc nanofertilizers -- 1.2.1.5 Copper nanofertilizers -- 1.2.1.6 Magnesium nanofertilizers -- 1.2.2 Polymer-based nanofertilizers -- 1.2.3 Nano-encapsulated fertilizers -- 1.2.4 Nanostructured fertilizers -- 1.2.5 Nano-coated fertilizers -- 1.2.6 Nanocomposites -- 1.2.7 Nanoemulsions -- 1.3 Nanobiofertilizer -- 1.3.1 Plant-based nanofertilizers -- 1.3.2 Bacteria-based nanofertilizers -- 1.3.3 Algae-based nanofertilizers -- 1.3.4 Fungi-based nanofertilizers -- 1.4 Nanofertilizers synthesis methods -- 1.4.1 Chemical synthesis -- 1.4.2 Physical methods -- 1.4.3 Biological methods -- 1.4.3.1 Cost-effective -- 1.4.3.2 Nontoxic -- 1.4.3.3 Simple and efficient -- 1.4.3.4 Control of size and shape -- 1.4.3.5 High stability -- 1.4.4 Combination methods -- 1.5 Synthesis hybrid nanofertilizers -- 1.5.1 Selection of nanoparticle materials -- 1.5.2 Preparation of the nanoparticle suspension -- 1.5.3 Mixing with traditional fertilizers -- 1.5.4 Coating or encapsulation -- 1.5.5 Characterization and testing -- 1.6 Characterization of nanofertilizers -- 1.6.1 Particle size and morphology -- 1.6.2 Chemical composition -- 1.6.3 Surface area and charge -- 1.6.4 Stability and agglomeration -- 1.6.5 Nutrient release and uptake -- 1.7 Nanofertilizers mode of actions -- 1.7.1 Improved nutrient availability -- 1.7.2 Enhanced nutrient uptake -- 1.7.3 Soil improvement -- 1.7.4 Controlled release -- 1.7.5 Induced plant growth and stress tolerance.
,
1.7.6 Antioxidant production -- 1.7.7 Osmolyte production -- 1.7.8 Nitrogen fixation -- 1.7.9 Enhanced photosynthesis -- 1.7.10 Reduced toxicity -- 1.8 Large-scale production methods -- 1.8.1 Wet chemical synthesis -- 1.8.2 Sol-gel method -- 1.8.3 Spray pyrolysis -- 1.8.4 High-energy ball milling -- 1.8.5 Electrodeposition -- 1.9 Production and commercialization challenges -- 1.9.1 High production costs -- 1.9.2 Stability and shelf-life issues -- 1.9.3 Standardization -- 1.9.4 Field testing -- 1.9.5 Health and environmental risks -- 1.9.6 Regulatory requirements -- 1.9.7 Scale-up challenges -- 1.9.8 Market acceptance -- 1.9.9 Compatibility with existing practices -- 1.9.10 Intellectual property protection -- 1.9.11 Lifecycle assessment -- 1.9.12 Education and training -- 1.10 Future directions -- 1.10.1 Biodegradable and eco-friendly nanofertilizers -- 1.10.2 Multifunctional nanofertilizers -- 1.10.3 Field evaluation and optimization -- 1.10.4 Integration with other technologies -- 1.10.5 Site-specific application -- 1.10.6 Smart delivery systems -- 1.10.7 Remote sensing -- 1.10.8 Data analysis -- 1.11 Conclusion -- References -- 1 Types of nanofertilizers -- 2 The synthesis of nanofertilizers: biological approaches -- 2.1 Introduction -- 2.2 Classification -- 2.2.1 Single nutrient ("straight") fertilizers -- 2.2.2 Multinutrient fertilizers -- 2.2.2.1 Examples -- 2.2.3 Sarsabz nitrophos fertilizer -- 2.2.4 Nitrogen-potassium fertilizers -- 2.2.5 Phosphate-potassium fertilizers -- 2.2.6 Nitrogen-phosphorus-potassium Fertilizers -- 2.2.7 Solid fertilizers -- 2.2.8 Lime fertilizers -- 2.2.9 Magnesium fertilizers -- 2.2.10 Organic fertilizer -- 2.3 Nanomaterials -- 2.3.1 Types -- 2.4 Nanofertilizers -- 2.4.1 Macro-nanofertilizer -- 2.4.2 Micro-nanofertilizer -- 2.4.3 Nano-biofertilizer -- 2.4.4 Significance of nanofertilizers.
,
2.4.5 Conventional fertilizers versus nanofertilizers -- 2.4.6 Crop nutrition with nanofertilizers -- 2.4.7 Advantages of nanofertilizers -- 2.4.8 Limitations of nanofertilizers -- 2.4.9 Inside the plant, nanofertilizer elements move around -- 2.4.10 Mode of entry of nanofertilizers -- 2.5 Synthesis of macrofertilizer and nanofertilizer -- 2.5.1 Synthesis of macrofertilizer -- 2.5.2 Ammonia (Haber-Bosch process) -- 2.5.3 Ammonium sulfate (Gypsum process) -- 2.5.4 Urea -- 2.5.4.1 Ammonium carbamate -- 2.5.5 Single superphosphate -- 2.6 Nanofertilizers synthesis -- 2.6.1 Top-down approach -- 2.6.2 Bottom-up approach -- 2.6.3 Biological approach (Green synthesis) -- 2.6.3.1 Microorganisms involved in nanoparticles (NPs) synthesis -- 2.6.3.2 Green biosynthesis of single and bimetallic Fe and Mn nanoparticles utilizing bacterial auxin complex as plant fert... -- 2.6.3.3 Biogenic synthesis of potassium nanoparticles -- 2.6.3.3.1 Synthesis of nanoparticles -- 2.6.3.4 Zinc oxide nanomaterials are biosynthesized from plant extracts -- 2.6.3.5 Green synthesis of MtNPs by microorganisms -- 2.6.3.5.1 Extracellular biosynthesis of MtNPs -- 2.6.3.5.2 Intracellular synthetic approaches -- 2.6.3.6 Green nanofertilizers synthesis as a foliar for Cucurbita pepo L -- 2.6.3.7 Sulfur nanoparticles green synthesis through plant extra -- 2.7 Smart delivery systems -- 2.7.1 In vitro methods -- 2.7.1.1 Aeroponics -- 2.7.1.2 Hydroponics -- 2.7.2 In vivo methods -- 2.7.2.1 Soil application -- 2.7.2.2 Foliar application -- 2.8 Nanofertilizers and plant promotions -- 2.8.1 Yield -- 2.8.2 Quality -- 2.8.3 Effect of nanofertilizers on the development and maturity of seeds -- 2.9 Advantages and disadvantages -- 2.10 Conclusion -- References -- 3 Nano-biofertilizers: plant growth promotions and protections -- 3.1 Introduction -- 3.2 Nanotechnology in agriculture.
,
3.3 Types of fertilizers -- 3.3.1 Synthetic fertilizers -- 3.3.2 Organic fertilizers -- 3.3.3 Hybrid fertilizers -- 3.3.4 Nanofertilizers -- 3.3.5 Nano-biofertilizers -- 3.4 Synthesis of nanofertilizers -- 3.4.1 Biosynthesis of nanofertilizers -- 3.4.2 Biopolymer-based nano fertilizers -- 3.5 Applications of nano-biofertilizers in plants -- 3.5.1 Role of nano-biofertilizers on crop-protection -- 3.5.2 Role of nano-biofertilizers on plant physiology and metabolism -- 3.5.3 Nano-biofertilizers as an alternative to chemical fertilizers -- 3.6 Nano versus conventional fertilizers -- 3.7 Nano-biofertilizer applicability -- 3.8 Potential and constraints of nano-biofertilizer -- 3.9 Future scope of nano-biofertilizers -- 3.10 Challenges -- 3.11 Conclusion -- References -- 4 Inorganic nanoparticles as eco-friendly fertilizers: synthesis, characterization, and agricultural applications -- 4.1 Introduction -- 4.2 Nanofertilizers -- 4.2.1 Types of nanofertilizers -- 4.2.1.1 Nutrient-nanofertilizers -- 4.2.1.1.1 Iron nanofertilizer -- 4.2.1.1.2 Zinc nanofertilizer -- 4.2.1.1.3 Magnesium nanofertilizer -- 4.2.1.1.4 Calcium nanofertilizer -- 4.2.1.1.5 Copper nanofertilizer -- 4.2.1.2 Mixed nutrient nanofertilizers -- 4.2.1.3 Sulfur nanofertilizer -- 4.2.2 Nanobiofertilizers -- 4.3 Synthesis or production of nanofertilizers -- 4.3.1 Classification of the basis of synthesis type -- 4.3.2 Synthesis of inorganic nanofertilizers -- 4.3.3 Chemical synthesis of nanofertilizers -- 4.3.4 Synthesis of organic nanofertilizers -- 4.3.5 Physical synthesis of nanofertilizers -- 4.4 Characterization of nanofertilizers -- 4.5 Application of nanofertilizers -- 4.5.1 Application methods -- 4.5.2 Foliar or phyllosphere application -- 4.5.3 Soil or rhizospheric application -- 4.6 Challenges and future perspectives -- References -- 5 Hybrid nanofertilizers: synthesis and applications.
,
5.1 Introduction -- 5.2 Nanofertilizers -- 5.3 Hybrid nanofertilizers-different types and synthesis methods -- 5.3.1 Metal-metal/metal oxide-based nanohybrids -- 5.3.1.1 Bimetallic/trimetallic nanohybrids -- 5.3.1.2 Metal/biocontrol-based nanohybrids -- 5.3.2 Core-shell nanohybrids -- 5.3.3 Polymer-based nanohybrids -- 5.3.4 Natural polymer (chitosan)-based nanohybrids -- 5.3.5 Agri-waste-based nanohybrids -- 5.4 Applications of hybrid nanofertilizers -- 5.5 Conclusion and future prospects -- Acknowledgment -- References -- 6 Synthesis of bionanoparticles and their significance in soil nutrition and plant development -- 6.1 Introduction -- 6.2 Synthesis of nanoparticles -- 6.2.1 Biochemical synthesis of nanoparticles -- 6.2.1.1 Plant-based nanoparticles -- 6.2.1.2 Microbes-based metal nanoparticles -- 6.2.2 Biosynthesis of chitosan and other nanoparticles -- 6.3 Sources and production of bionanoparticles -- 6.4 Mechanism of plant-based bionanoparticles -- 6.5 Types of bionanoparticles -- 6.5.1 Organic bionanoparticles -- 6.5.2 Inorganic bionanoparticles -- 6.5.3 Hybrid bionanoparticles -- 6.5.4 Mechanisms of synthesis -- 6.6 Applications of bionanoparticles in agriculture -- 6.6.1 Bionanoparticles as safe fertilizers -- 6.6.2 Role of nanobiofertilizer in soil quality -- 6.6.3 Role of bionanoparticles in plant growth -- 6.7 Future prospects -- 6.8 Conclusion -- References -- 7 Biopolymers-based nanofertilizers -- 7.1 Introduction -- 7.2 Fertilizer usage in agriculture -- 7.2.1 Fertilizer -- 7.2.2 Organic fertilizer -- 7.2.3 Inorganic fertilizer -- 7.2.4 Chemical fertilizer -- 7.2.5 Biological fertilizer -- 7.2.6 Fate of fertilizers in ecosystem -- 7.3 Synthesis of nanofertilizer -- 7.3.1 Metallic nanoparticles -- 7.3.2 Polymer nanoparticles -- 7.3.2.1 Synthesis of biopolymer -- 7.3.2.2 Slow-release mechanism of biopolymer.
,
7.3.2.3 Biopolymer as nanocarrier.
Additional Edition:
Print version: A Abd-Elsalam, Kamel Nanofertilizer Synthesis: Methods and Types San Diego : Elsevier,c2024 ISBN 9780443135354
Language:
English
Bookmarklink