UID:
almahu_9949982573102882
Umfang:
1 online resource (410 pages)
Ausgabe:
1st ed.
ISBN:
9780443138362
Inhalt:
This comprehensive book on biofuel cells explores the design, application, and advancements in the field of sustainable energy. Edited by Shaojun Dong, the book offers a detailed examination of biofuel cells, focusing on their role in converting chemical energy into electricity using biological catalysts. Combining disciplines such as biochemistry and materials science, it provides valuable insights into the mechanisms and materials essential for biofuel cell operation. Key topics include the evolution of biocatalysts, electron transfer processes, hybrid systems, and advanced manufacturing techniques. The book highlights the practical applications of biofuel cells in areas like biosensors and energy storage, emphasizing their significance in the development of sustainable technologies. Aimed at students, researchers, and industry professionals, it serves as both a scholarly resource and a guide for future research in biofuel cell technology.
Anmerkung:
Intro -- Biofuel Cells: The Design and Application of Biological Catalysts -- Copyright -- Contents -- Contributors -- Foreword -- Preface -- Chapter 1: Biofuel cells: From nature to energy -- 1.1. Introduction -- 1.2. Mechanism -- 1.3. Role of biological catalyst -- 1.4. Application perspective -- References -- Chapter 2: Microbial fuel cells -- 2.1. Microbial fuel cells and bioelectricity -- 2.1.1. Principles of microbial fuel cells -- 2.1.2. Fundamentals of voltage generation -- 2.2. Electrochemically active microorganisms -- 2.2.1. Microbial communities in anode -- 2.2.2. Microbial communities in cathode -- 2.3. Mechanisms for electron transfer -- 2.3.1. Direct extracellular electron transfer -- 2.3.1.1. C-type cytochromes -- 2.3.1.2. Microbial nanowires -- 2.3.2. Indirect extracellular electron transfer -- 2.4. Materials and configurations of MFCs -- 2.4.1. Anode materials -- 2.4.2. Cathode materials -- 2.4.3. Membrane materials -- 2.4.4. Configurations of MFCs -- 2.5. Applications of MFC in wastewater treatment -- 2.5.1. Removal of COD -- 2.5.2. Removal and recovery of nitrogen -- 2.5.3. Removal and recovery of phosphorus -- 2.5.4. Removal and recovery of sulfur -- 2.5.5. Removal and recovery of heavy metals -- 2.5.6. Emerging pollutants treatment -- 2.6. Summary and outlook -- References -- Chapter 3: Biological catalyst evolution of enzymatic biofuel cells -- 3.1. Natural enzyme -- 3.1.1. Oxidoreductases -- 3.1.1.1. Dehydrogenases -- NAD+/NADP+-dependent dehydrogenases -- Other dehydrogenases -- 3.1.1.2. Oxidases -- Flavin-containing oxidases -- Metal-containing oxidases -- 3.1.1.3. Hydrogenases -- 3.1.1.4. Heme-containing oxidoreductases -- 3.1.2. Enzymatic cascade reactions -- 3.1.3. Electron transfer pathway in natural enzymes -- 3.2. Enzyme engineering for biocatalysts -- 3.2.1. Enzyme engineering strategies.
,
3.2.1.1. Directed evolution -- 3.2.1.2. Rational design -- 3.2.1.3. Semirational design -- 3.2.2. Engineering toward different goals -- 3.2.2.1. Engineering toward electrocatalytic activity -- 3.2.2.2. Engineering toward substrate scope -- 3.2.2.3. Engineering toward robustness -- 3.2.3. De novo enzyme design for bioelectrocatalysis -- 3.3. Nanozymes -- 3.3.1. Nanozymes vs natural enzymes -- 3.3.2. Nanozymes for anodic electrocatalysis -- 3.3.3. Nanozymes for cathodic electrocatalysis -- 3.4. Summary and outlook -- References -- Chapter 4: Electron transfer in enzymatic biofuel cells -- 4.1. Enzymatic electron transfer -- 4.1.1. Direct electron transfer -- 4.1.2. Mediated electron transfer -- 4.2. Enzyme immobilization -- 4.2.1. Carbon -- 4.2.2. Metallic and oxide materials -- 4.2.3. Polymers -- 4.2.4. Composite materials -- 4.3. Typical enzymes in biofuel cells -- 4.3.1. Enzymes for anodes -- 4.3.1.1. Enzymes for glucose oxidation -- 4.3.1.2. Enzymes for alcohol oxidation -- 4.3.1.3. Enzymes for H2 oxidation -- 4.3.1.4. Enzyme cascade -- 4.3.2. Enzymes for cathodes -- 4.3.2.1. Enzymes for O2 reduction -- 4.3.2.2. Enzymes for H2O2 reduction -- 4.4. Summary and outlook -- References -- Chapter 5: Hybrid biofuel cells -- 5.1. Hybrid biofuel cell with multiple types of energy sources -- 5.2. Biofuel cells coupled with solar energy converter (photoelectrochemical enzymatic biofuel cells) -- 5.2.1. Various configurations of PEFC -- 5.2.2. Working principle of photoactive enzyme coupling electrode -- 5.2.2.1. Direct electron transfer of photoenzyme electrode -- 5.2.2.2. Indirect electron transfer of photobiocatalyst electrode -- 5.2.2.3. Cascade reaction of photoenzyme electrode -- 5.2.3. Photocatalyst-based electrode -- 5.2.4. Adjustable photoelectrode -- 5.2.5. Application of PEFCs -- 5.2.5.1. Sustainable power generation.
,
5.2.5.2. Self-powered biosensor -- 5.3. Biofuel cells coupled with thermal energy converter -- 5.3.1. Thermal effect and TEGs -- 5.3.2. EFC modulation by thermal effects -- 5.3.3. EFC-TEG hybrid systems -- 5.4. Biofuel cells coupled with mechanical energy converter -- 5.4.1. Mechanical energy and TENGs -- 5.4.2. EFC-TENG hybrid systems -- 5.5. Summary and outlook -- References -- Chapter 6: Advanced manufacture of biofuel cells -- 6.1. Printed biofuel cells -- 6.1.1. Printing methodology -- 6.1.1.1. Screen printing -- 6.1.1.2. Inkjet printing -- 6.1.1.3. 3D printing -- 6.1.1.4. Laser printing -- 6.1.1.5. Others -- 6.1.2. Printing biodevices -- 6.1.2.1. Paper-based printed biofuel cells -- 6.1.2.2. Origami-based printed biofuel cells -- 6.1.2.3. Flexible substrate-based printed biofuel cells -- 6.1.2.4. Others -- 6.2. Microneedle biofuel cells -- 6.2.1. Fabrication methods of microneedles -- 6.2.1.1. Subtractive manufacturing -- 6.2.1.2. Additive manufacturing -- 6.2.1.3. Formative manufacturing -- 6.2.2. Microneedle-based biofuel cells -- 6.3. Microfluidic biofuel cells -- 6.3.1. Microfluidics methodology -- 6.3.1.1. Microfluidics architectures -- 6.3.1.2. Microfluidics fabricating techniques -- 6.3.2. Microfluidics biodevices -- 6.4. Fiber biofuel cells -- 6.4.1. Fabrication principles of fiber electrodes -- 6.4.1.1. Conversion from precursors -- 6.4.1.2. Floating catalyst chemical vapor deposition -- 6.4.1.3. Electrospinning -- 6.4.1.4. Rewrapping -- 6.4.2. Fiber BFC-based biodevices -- 6.5. Summary and outlook -- References -- Chapter 7: Applications for biofuel cells -- 7.1. Self-powered biosensors -- 7.1.1. Positive enhanced effect -- 7.1.2. Negative inhibitive effect -- 7.1.3. Conclusion and prospect -- 7.2. Wearable bioelectronics -- 7.2.1. Sources for the wearable bioelectronics -- 7.2.2. Assembly strategy for wearable bioelectronics.
,
7.2.3. State of wearable bioelectronics -- 7.3. Implantable bioelectronics -- 7.3.1. Sources for the implantable bioelectronics -- 7.3.2. Assembly strategy for implantable bioelectronics -- 7.3.3. State of implantable bioelectronics -- 7.4. Capacitive biofuel cells -- 7.4.1. Enzyme-based capacitive biofuel cells -- 7.4.2. Microbe-based capacitive biofuel cells -- 7.4.3. Photo-based capacitive biofuel cells -- 7.4.4. The application of capacitive biofuel cells -- 7.5. Summary and outlook -- References -- Author-Index -- Subject-Index.
Weitere Ausg.:
Print version: Dong, Shaojun Biofuel Cells San Diego : Elsevier,c2024 ISBN 9780443138355
Sprache:
Englisch
Bookmarklink