Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    Amsterdam, Netherlands :Elsevier Inc.,
    UID:
    almahu_9949984530802882
    Umfang: 1 online resource (457 pages)
    Ausgabe: First edition.
    ISBN: 9780443140266 , 044314026X
    Serie: Micro and Nano Technologies Series
    Anmerkung: Front Cover -- Advances in Nanostructures -- Copyright Page -- Contents -- List of contributors -- 1 Introduction to nanostructure and their microscopic characterization -- 1.1 Introduction -- 1.1.1 Scanning electron microscopy -- 1.1.2 Transmission electron microscopy -- 1.1.3 Atomic force microscopy -- 1.2 Types of nanostructures -- 1.2.1 Nanoparticles -- 1.2.2 Nanospheres -- 1.2.3 Nanowires -- 1.2.4 Nanobelts -- 1.2.5 Nanoneedles -- 1.2.6 Nanotubes -- 1.2.7 Nanoflowers -- 1.2.8 Nanocubes -- 1.2.9 Nanorods -- 1.2.10 Nanodiscs -- 1.2.11 Nanohelices -- 1.2.12 Nanosprings -- 1.3 Conclusion -- References -- 2 Mathematical aspects of physical properties of nanostructures -- 2.1 Introduction -- 2.1.1 Energy band gap -- 2.1.1.1 Mathematical formulations -- 2.1.2 Dielectric constant -- 2.1.3 Debye temperature -- 2.1.3.1 Analytical formulation -- 2.1.4 Photoelectric properties -- 2.2 Conclusion -- References -- 3 Theoretical methods for physical characterization of nanostructures -- 3.1 Introduction -- 3.2 Density functional theory and its applications -- 3.2.1 Fundamentals of density functional theory -- 3.2.2 Applications in material science -- 3.2.2.1 Structural optimization -- 3.2.2.1.1 Setup -- 3.2.2.1.2 Energy calculation -- 3.2.2.1.3 Gradient-based optimization -- 3.2.2.1.4 Convergence -- 3.2.2.1.5 Validation -- 3.2.2.1.6 Post-optimization analysis -- 3.2.2.2 Electronic properties -- 3.2.2.2.1 Energy band structure -- 3.2.2.2.2 Density of states -- 3.2.2.2.3 Charge density -- 3.2.2.2.4 Electronic transport properties -- 3.2.2.3 Magnetic properties -- 3.2.2.3.1 Spin-polarized calculations -- 3.2.2.3.2 Magnetic moments prediction -- 3.2.2.3.3 Phase transitions analysis -- 3.2.2.3.4 Magnetic anisotropy determination -- 3.2.2.3.5 Exchange interactions investigation -- 3.2.2.3.6 Defects and dopants effects -- 3.2.2.4 Phonon spectra. , 3.2.2.4.1 Harmonic approximation -- 3.2.2.4.2 Density functional perturbation theory -- 3.2.2.4.3 Superlattice method -- 3.2.2.4.4 Thermal properties prediction -- 3.2.3 Application in computational chemistry -- 3.2.3.1 Reaction mechanisms -- 3.2.3.2 Binding energies -- 3.2.3.3 Transition metal complexes -- 3.2.4 Application in computational material science -- 3.2.4.1 Nanomaterials -- 3.2.4.2 Surface chemistry -- 3.2.4.3 Defects and impurities -- 3.2.5 Applications in biology -- 3.2.5.1 Protein structure and dynamics -- 3.2.5.2 Drug design -- 3.2.5.3 Biomolecular interactions -- 3.3 Molecular dynamics simulations for nanoscale systems -- 3.3.1 Fundamentals of molecular dynamics simulations -- 3.3.2 Applications in nanoscale systems -- 3.3.2.1 Nanoparticles and nanomaterials -- 3.3.2.2 Nanomechanics and nanotribology -- 3.3.2.3 Nanofluidics and nanoscale transport -- 3.3.2.4 Protein folding and biomolecular dynamics -- 3.3.2.5 Nanodevices and nanoelectronics -- 3.3.2.6 Study of radiation damage -- 3.4 Monte Carlo simulations and their role -- 3.4.1 Fundamentals of Monte Carlo simulations -- 3.4.2 Applications in physical characterization of nanostructures -- 3.4.2.1 Phase transitions and critical phenomena -- 3.4.2.2 Thermodynamic properties -- 3.4.2.3 Structural and morphological characterization -- 3.4.2.4 Adsorption and surface interactions -- 3.4.3 Monte Carlo simulations in nanomaterials and nanodevices -- 3.4.3.1 Nanoparticles and nanostructures -- 3.4.3.2 Nano-electronics and semiconductor devices -- 3.4.3.3 Quantum Monte Carlo -- 3.5 Finite element method -- 3.5.1 Fundamentals of finite element method -- 3.5.2 Role of finite element method in nanostructure characterizations -- 3.5.2.1 Mechanical properties -- 3.5.2.2 Structural optimization -- 3.5.2.3 Thermal analysis -- 3.5.2.4 Electromagnetic characterization. , 3.5.2.5 Fluid-structure interaction -- 3.5.2.6 Vibration and dynamics -- 3.6 Continuum mechanics -- 3.7 Tight-binding models -- 3.8 Ab initio molecular dynamics -- 3.9 Computational nanomechanics -- 3.10 Non-equilibrium Green's function (NEGF) -- 3.11 Conclusion and future prospects -- Acknowledgments -- AI disclosure -- References -- 4 Physical deposition methods for the growth of nanostructures -- 4.1 Introduction -- 4.2 Pulsed laser deposition -- 4.3 Radio frequency sputtering -- 4.4 Conclusion -- Acknowledgments -- References -- 5 Chemical methods for specialized nanostructure -- 5.1 Introduction -- 5.2 Synthesis and characterization of nanowires -- 5.3 Synthesis and characterization of nanorods -- 5.4 Synthesis and characterization of nanobelts -- 5.5 Synthesis of oxides tetrapod -- 5.6 Conclusion and future scope -- Acknowledgment -- References -- 6 Advanced chemical methods for metal oxide nanostructures -- 6.1 Introduction -- 6.2 Advanced chemical techniques for synthesis of metal oxide nanostructures -- 6.2.1 Atomic layer deposition -- 6.2.2 Chemical vapor transport method -- 6.2.3 Flame transport synthesis -- 6.2.4 Microemulsion technique -- 6.2.5 Applications of metal oxides nanostructures synthesized using advanced chemical routes -- 6.2.6 Metal oxides nanostructures for photocatalyst applications -- 6.2.7 Metal oxides nanostructures for sensing applications -- 6.2.8 Biomedical applications of metal oxide nanostructures -- 6.2.9 Advanced chemical methods for electronic and memory device applications -- 6.2.10 Atomic layer deposition -- 6.2.11 Chemical vapor transport and condensation -- 6.2.12 Flame transport synthesis method -- 6.3 Role of advanced chemical methods in enhancing device performance -- 6.3.1 Tailored material properties -- 6.3.1.1 Enhanced surface area and reactivity -- 6.3.1.2 Integration and miniaturization. , 6.4 Electronic and memory device applications -- 6.4.1 Transistors and semiconductor components -- 6.4.1.1 Nonvolatile memory devices -- 6.4.1.2 Sensors and detectors -- 6.4.1.3 Optoelectronic devices -- 6.4.1.4 Energy storage and conversion -- 6.4.2 Future prospects of the electronic and memory devices -- References -- 7 Ion Beam Tools for Nanostructured Thin Films of Functional Oxides -- 7.1 Introduction -- 7.2 Ion beam accelerator -- 7.3 Role of ion beam in nanostructured manganites -- 7.3.1 Pure RMnO3 manganites -- 7.3.2 Doped R1−xAxMnO3 mixed valent manganites -- 7.4 Role of ion beam in nanostructured multiferroics -- 7.4.1 Pure RFeO3 multiferroic -- 7.4.2 Doped R1−xAxFeO3 multiferroic -- 7.5 Examples of nanostructuring -- 7.6 Conclusion -- 7.7 Future perspectives -- References -- 8 Focused ion beam methodology for nanostructuring -- 8.1 Introduction -- 8.2 Focused ion beam -- 8.2.1 Basic principles and working -- 8.2.2 Nanostructure fabrication using FIB -- 8.2.2.1 Constructive -- 8.2.2.2 Destructive -- 8.2.3 Surface modification using FIB -- 8.2.4 Surface analysis -- 8.3 Damage caused by FIB nanofabrication -- 8.4 Applications -- 8.4.1 Nanomanipulators -- 8.4.2 Biotechnology -- 8.4.3 FIB nanofabrication -- 8.4.3.1 FIB etching -- 8.4.3.2 FIB irradiation -- 8.4.3.3 FIB deposition -- 8.4.3.4 FIB implantation -- 8.5 Conclusion -- Acknowledgments -- References -- 9 Effect of laser irradiation on the ferrite nanostructures -- 9.1 Introduction -- 9.2 Spinel ferrite materials -- 9.3 Effect of laser irradiation on structural behavior and morphology of ferrites -- 9.4 Effect of laser radiation on electrical properties of ferrites -- 9.5 Effect of laser radiation on magnetic properties of ferrites -- 9.6 Optical behavior of ferrites under laser irradiation -- 9.7 Conclusion -- References -- 10 Nanostructures using 3D printing -- 10.1 Introduction. , 10.2 Several types of 3D-printed nanostructures -- 10.2.1 Nanotubes -- 10.2.2 Nanorods -- 10.2.3 Nanopillars -- 10.2.4 Nanogrooves -- 10.2.5 Nanopits -- 10.2.6 Nanofibers -- 10.3 Fabrication technology -- 10.3.1 Template-assisted 3D printing -- 10.3.1.1 Principles -- 10.3.1.2 Process parameters -- 10.3.1.2.1 Template design -- 10.3.1.2.2 Material deposition -- 10.3.1.2.3 Deposition technique -- 10.3.1.2.4 Template removal -- 10.3.1.3 Materials -- 10.3.1.4 Nanostructures -- 10.3.2 Electrospinning -- 10.3.2.1 Principles -- 10.3.2.2 Process parameters -- 10.3.2.3 Materials -- 10.3.2.4 Nanostructures -- 10.3.3 Two-photon polymerization -- 10.3.3.1 Principles -- 10.3.3.2 Process parameters -- 10.3.3.3 Materials -- 10.3.3.4 Nanostructures -- 10.3.4 Photolithography -- 10.3.4.1 Principle -- 10.3.4.2 Process parameters -- 10.3.4.3 Materials -- 10.3.4.4 Nanostructures -- 10.3.5 Soft lithography -- 10.3.5.1 Principles -- 10.3.5.2 Process parameters -- 10.3.5.3 Materials -- 10.3.5.4 Nanostructures -- 10.4 Application -- 10.4.1 Tissue engineering -- 10.4.1.1 Bone tissue engineering -- 10.4.1.2 Neural tissue engineering -- 10.4.1.3 Skin tissue engineering -- 10.4.1.4 Cardiac tissue engineering -- 10.4.2 Drug delivery -- 10.4.2.1 Controlled drug release systems -- 10.4.2.2 Targeted drug delivery -- 10.4.2.3 Combination therapy -- 10.4.2.4 Vaccine delivery -- 10.5 Challenges and future scope -- References -- 11 Structural phase transition, electronic and mechanical properties of NaVO3: a density functional theory study -- 11.1 Introduction -- 11.2 Computational methods -- 11.3 Results and discussions -- 11.3.1 Structural properties -- 11.3.2 Electronic properties -- 11.3.3 Mechanical properties -- 11.4 Conclusions -- References -- 12 Nanostructures for energy harvesting -- 12.1 Introduction -- 12.2 Fundamentals of triboelectric energy harvesting. , 12.3 Working modes.
    Weitere Ausg.: ISBN 9780443138195
    Weitere Ausg.: ISBN 0443138192
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443140426?
Meinten Sie 9780443140969?
Meinten Sie 9780443140976?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz