Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    Online-Ressource
    Online-Ressource
    San Diego, CA, USA : Elsevier Science
    UID:
    almafu_9961437146302883
    Umfang: 1 online resource (947 p.)
    ISBN: 9780443141133 , 0443141134
    Weitere Ausg.: ISBN 9780443141126
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    edocfu_9961437146302883
    ISBN: 0-443-14113-4
    Weitere Ausg.: ISBN 9780443141126
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edoccha_9961437146302883
    ISBN: 0-443-14113-4
    Weitere Ausg.: ISBN 9780443141126
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cambridge, MA :Elsevier Inc.,
    UID:
    almahu_9949983140102882
    Umfang: 1 online resource (497 pages)
    Ausgabe: First edition.
    ISBN: 9780443141133 , 9780443141126
    Anmerkung: Front Cover -- Microbial Biotechnology for Bioenergy -- Copyright Page -- Contents -- List of contributors -- About the editors -- Foreword -- Preface -- Acknowledgments -- 1 Sources, challenges, and environmental views -- 1 Microbial biotechnology for bioenergy: general overviews -- 1.1 Introduction to bioenergy -- 1.2 Sources and challenges of bioenergy -- 1.3 Role of microorganisms in bioenergy generation -- 1.4 Challenges of bioenergy -- 1.5 Innovations of bioenergy -- 1.5.1 Gasification -- 1.5.2 Biocoal -- 1.5.3 Algae -- 1.5.4 Biocube -- 1.6 Bioenergy and environmental conservation -- 1.7 Environmental benefits of bioenergy -- 1.8 Challenges and considerations in bioenergy -- 1.9 Call to action for bioenergy prioritization -- 1.10 Conclusion -- References -- 2 Global advances in bioenergy production technologies -- 2.1 Introduction -- 2.2 Bioenergy -- 2.2.1 Generations of bioenergy technologies in bioenergy production -- 2.2.1.1 Biomass conversion technology: physicochemical conversion technology -- 2.3 Extraction or separation method -- 2.3.1 Thermochemical conversion technology -- 2.3.2 Conventional combustion -- 2.3.3 Carbonization -- 2.3.4 Liquefaction -- 2.3.5 Pyrolysis -- 2.3.6 Gasification -- 2.4 Biochemical conversion technology -- 2.4.1 Types of biochemical conversion technologies -- 2.4.1.1 Anaerobic digestion -- 2.4.1.2 Fermentation -- 2.5 Biological conversion technology -- 2.5.1 Dark fermentation -- 2.5.2 Biophotolysis process -- 2.5.2.1 Direct biophotolysis -- 2.5.2.2 Indirect biophotolysis -- 2.6 Economic and environmental implications of the bioenergy production technologies -- 2.7 Limitation of bioenergy production technologies -- 2.8 Potentials and future prospects in bioenergy production technologies -- 2.9 Conclusion -- References -- 3 Role of biotechnology and processing in bioenergy -- 3.1 Introduction. , 3.1.1 Biofuel classification -- 3.1.1.1 Generations of biofuels -- 3.1.1.2 Varieties of biofuels -- 3.2 Technology for converting biomass into biofuel -- 3.2.1 Processes of physicochemical conversion -- 3.2.1.1 Method for extraction or separation -- 3.2.1.2 Transesterification -- 3.2.2 Thermochemical conversion procedures -- 3.2.2.1 Standard combustion -- 3.2.2.2 Carbonization -- 3.2.2.3 Liquefaction -- 3.2.2.4 Pyrolysis -- 3.2.2.5 Gasification -- 3.2.3 Processes of biochemical conversion -- 3.2.3.1 Mechanism of fermentation -- 3.2.3.2 Anaerobic digestion -- 3.2.4 Biological process -- 3.2.4.1 Biophotolysis -- 3.2.4.2 Photofermentation -- 3.2.4.3 Dark fermentation -- 3.2.4.4 Multistage bioreactor for the production of biogas -- 3.3 Limitations and opportunities related to economic and environmental issues -- 3.3.1 Comparing the economic viability of fossil fuel with biofuel -- 3.3.2 Environmental effects and advantages -- 3.3.3 Bioenergy generation has several limitations -- 3.3.4 Future possibilities and future research considerations for efficient bioenergy generation -- 3.4 Conclusion -- References -- 4 Distribution of biomass sources for bioenergy production: challenges and benefits -- 4.1 Introduction -- 4.2 Types of biomass -- 4.2.1 Agricultural products and wood -- 4.2.2 Solid waste -- 4.2.3 Landfill gas and biogas -- 4.2.4 Ethanol -- 4.2.5 Biodiesel -- 4.3 Overview of biomass sources -- 4.4 Challenges in biomass distribution for bioenergy production -- 4.5 Benefits of biomass distribution for bioenergy production -- 4.6 Biomass resource mapping and assessment -- 4.7 Policies and regulations for biomass distribution -- 4.8 Technological advances in biomass conversion -- 4.9 Conclusion -- References -- 5 Decarbonization and the future fuels -- 5.1 Introduction -- 5.2 Decarbonization strategies and management. , 5.3 Pathways to creating a successful decarbonization strategy -- 5.3.1 Pinpointing achievable tasks and taking swift actions to lower the carbon footprint -- 5.3.2 Decide on what can be done internally and where external collaborators are required -- 5.3.3 Read and understand the regulatory landscape -- 5.3.4 Embrace digitization -- 5.3.5 Learn the technicality, competence, and comprehensive knowledge -- 5.3.6 Give priority to technologies that are available, less risky, and of low cost -- 5.3.7 Build adaptability into the plan -- 5.3.8 Communicate -- 5.3.9 Accept uncertainty -- 5.4 Decarbonization strategy -- 5.5 Strategies to capitalize on the three cross-cutting ways -- 5.6 Advantages and disadvantages of decarbonization -- 5.6.1 Advantages of decarbonization -- 5.6.1.1 A decrease in greenhouse gas emissions -- 5.6.1.2 Clean air to breathe -- 5.6.1.3 Higher crop yields -- 5.6.1.4 It increases employment opportunities -- 5.6.1.5 Lower cost of living -- 5.6.2 Disadvantages of decarbonization -- 5.6.2.1 Regulations -- 5.6.2.2 High electricity costs -- 5.6.2.3 Loss of jobs -- 5.6.2.4 Negative environmental effects -- 5.6.2.5 Competition -- 5.7 Fuel -- 5.7.1 Definition of fuel -- 5.7.2 Fuel efficiency -- 5.8 Characteristics of good fuel -- 5.9 Types of fuel -- 5.9.1 Fossil fuel -- 5.9.1.1 Coal formation -- 5.9.2 Future fuels -- 5.9.3 Biofuel -- 5.9.3.1 Generation of biofuels -- 5.9.4 Fuel gas -- 5.9.5 Liquid fuel -- 5.9.6 Solid fuel -- 5.10 Impact of decarbonization on fuel production -- 5.11 Importance of decarbonization -- 5.12 The negative effects of decarbonization -- 5.13 Conclusion -- References -- 6 Bioenergy: the environmentalist's perspectives -- 6.1 Introduction -- 6.2 Bioenergy -- 6.2.1 Forms of bioenergy -- 6.2.2 Bioenergy sources -- 6.2.2.1 Biomass sources -- 6.2.2.2 Biofuel sources -- 6.2.2.3 Biogas sources. , 6.2.3 Bioenergy conversion technologies -- 6.2.3.1 Combustion -- 6.2.3.2 Gasification -- 6.2.3.3 Anaerobic digestion -- 6.3 Significance of bioenergy in the energy sector -- 6.4 Global energy demand and bioenergy potential -- 6.5 The environmentalists' perspectives -- 6.6 Food security and agricultural impacts of bioenergy -- 6.7 Bioenergy and agricultural land use -- 6.8 Food prices and bioenergy -- 6.9 Supporting smallholder farmers -- 6.10 Environmental policy integration in bioenergy -- 6.11 Environmental policy integration -- 6.12 Strategies for environmental policy integration in bioenergy -- 6.13 Challenges and opportunities -- 6.14 Conclusion -- References -- 7 Current trend of bioenergy of biogas, biomethane, and hydrogen in developed countries -- 7.1 Introduction -- 7.2 Transition of biomass from traditional use to modern use -- 7.2.1 Traditional use of biomass -- 7.2.2 Modern use of biomass -- 7.3 Biomass energy resources -- 7.3.1 Plant origin biomass energy resources -- 7.3.2 Forest biomass resources (obtained from the forest and its byproducts) -- 7.3.3 Animal biomass energy sources -- 7.3.4 Biomass energy sources from biodegradable waste, urban waste, and industrial waste -- 7.4 Biofuels -- 7.4.1 Bioenathole -- 7.4.2 Biogas -- 7.4.3 Hydrogen -- 7.4.3.1 Australia -- 7.4.3.2 European Union -- 7.4.3.3 Canada -- 7.4.3.4 The United States of America -- 7.4.3.5 South Korea -- 7.4.3.6 Japan -- 7.5 Current trend of bioenergy in developed countries -- 7.6 Conclusion -- References -- 8 Emerging technology in global bioenergy generation -- 8.1 Introduction -- 8.2 Role of technology in the development of bioenergy -- 8.2.1 Development of process technology -- 8.2.2 Developments in catalysis -- 8.2.3 Enzyme production -- 8.2.4 Availability of feedstock -- 8.2.5 Developments in reactor systems -- 8.3 Conclusion -- References. , 2 Yesterday, today and tomorrow innovations of bioenergy -- 9 Bioconversion of biomass energy and biological residues: the role of microbes -- 9.1 Introduction -- 9.1.1 Biomass wastes -- 9.1.1.1 Components of biomass wastes and biological residues -- 9.1.1.1.1 Lignin -- 9.1.1.1.2 Hemicelluloses -- 9.1.1.1.3 Cellulose -- 9.1.1.1.4 Murein and chitin -- 9.1.2 Environmental effects of biomass waste and biological residues -- 9.1.3 Products of waste bioconversion -- 9.1.3.1 Biofuels -- 9.1.3.2 Organic acids -- 9.1.3.3 Enzymes -- 9.1.3.4 Antibiotics -- 9.1.3.5 Flavors -- 9.1.3.6 Organic manure -- 9.1.4 Microorganisms in the bioconversion of biomass and biological residues -- 9.1.5 Factors affecting microbial degradation of biomass and biological residues -- 9.1.5.1 Temperature -- 9.1.5.2 Moisture -- 9.1.5.3 Incubation time -- 9.1.5.4 Aeration and substrate size -- 9.1.5.5 pH -- 9.1.5.6 Structural complexity -- 9.1.5.7 Decrease in biomass polysaccharides -- 9.1.6 Role of microorganisms in bioconversion of biomass energy and biological residues -- 9.1.6.1 Composting -- 9.1.6.1.1 Mesophilic phase (25°C-40°C) -- 9.1.6.1.2 Thermophilic phase (35°C-65°C) -- 9.1.6.1.3 Cooling phase -- 9.1.6.1.4 Maturation and curing phase -- 9.1.6.2 Anaerobic digestion -- 9.1.6.2.1 Hydrolysis -- 9.1.6.2.2 Acidogenesis -- 9.1.6.2.3 Acetogenesis -- 9.1.6.2.4 Methanogenesis -- 9.1.7 Importance of composting and anaerobic digestion -- 9.1.8 Microbial consortia and adaptation for biomass bioconversions -- 9.1.8.1 Microbial consortia for biomass bioconversions -- 9.1.8.1.1 Bacterial consortium -- 9.1.8.1.2 Fungal consortium -- 9.1.8.1.3 Bacterial and fungal consortia -- 9.1.8.2 Microbial adaptation -- 9.2 Conclusion -- References -- 10 Potentials of organic waste to provide bioenergy -- 10.1 Introduction -- 10.2 Organic waste -- 10.2.1 Categories of organic waste. , 10.2.1.1 Forestry waste.
    Weitere Ausg.: Print version: Maddela, Naga Raju Microbial Biotechnology for Bioenergy San Diego : Elsevier,c2024
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443140426?
Meinten Sie 9780443141140?
Meinten Sie 9780443141157?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz