UID:
almahu_9949984344102882
Umfang:
1 online resource (936 pages)
ISBN:
9780443158612
Inhalt:
Clinical Biomechanics in Human Locomotion: Gait and Pathomechanical Principles explores the clinical management of gait-disturbing or gait-induced pathologies and biomechanical variances during gait between individuals. The book discusses what is required to make terrestrial human locomotion safe and what causes pathology within a context of high locomotive and morphological variability. The interaction of genetics, epigenetics, developmental biology and physiology under the influence of locomotive biomechanics and metabolic energetics drives evolution. Such biological pressures on survival are essential in understanding the locomotive biomechanics of modern humans. In addition, lifestyle, including gait speed adaptability established during the growth influences of anatomical development is also considered. Links human locomotive biomechanics to medicine, physiology, evolutionary anatomy and medicine Prepares students, bioengineers and clinicians for the reality of utilizing biomechanical principles in clinical practice while also informing researchers of environmental limits Includes further concepts in gait mechanics such as lower limb length, gait speed and how to calculate locomotive costs.
Anmerkung:
Intro -- Clinical Biomechanics in Human Locomotion: Gait and Pathomechanical Principles -- Copyright -- Dedication -- Contents -- About the authors -- Foreword -- Preface -- Acknowledgements -- Abbreviations -- Introduction -- Chapter 1: Understanding human gait -- Chapter introduction -- 1.1. Gait principles -- 1.1.1. Introduction -- 1.1.2. Gait energetics -- Energetic collision strategy in gait -- Walking collisions -- 1.1.3. Dividing the body segments to explain gait -- Head, arms, and trunk in gait -- Locomotor segments and the pelvis in gait -- 1.1.4. Gait motion and description -- The laws of motion in the gait cycle -- Gait-type definitions -- 1.1.5. Walking gait phases -- Swing phase -- Stance phase -- 1.1.6. Challenges of upright posture in locomotion -- 1.1.7. Human gait models -- Human inverted pendular walking gait model -- Energetics of inverted pendular gait -- The plantigrade foot in inverted pendular gait -- Heel lift energetics -- Spring-mass model and double pendulum gait -- 1.1.8. Describing gait: Rancho Los Amigos divisions -- Rancho Los Amigos system of gait description -- Rancho Los Amigos divisions of the walking gait cycle -- Weight acceptance (contact and loading response): 0%-10% -- Single-limb support (mainly midstance): 10%-50% -- Weight transference/acceleration (terminal stance): 50%-60% -- Limb advancement (swing phase): 60%-100% -- Three-point foot rockers during the stance phase -- 1.1.9. Additions and modifications to the Rancho Los Amigos divisions -- 1.1.10. Section summary -- 1.2. Principles of gait analysis data -- 1.2.1. Introduction -- 1.2.2. Stability and ground reaction force -- CoM influence on stability -- Statics and ground reaction force relationship -- Principles of maintaining stability in stance phase of gait -- Recording GRF -- 1.2.3. Measurements and interpretation of GRF.
,
1.2.4. Vertical GRF components in walking -- First peak in GRF (F1) -- First peak (F1) to trough (F2) -- Trough (F2) to second peak (F3) -- F3 to toe-off -- 1.2.5. Anterior-posterior and medial-lateral GRF components in walking -- Anterior-posterior components including claw back -- Heel strike to posterior peak (F4) -- Posterior peak (F4) to crossover point -- Crossover to anterior peak (F5) -- F5 peak to toe-off -- The effect of arm swing on vertical and horizontal forces -- Medial-lateral GRF components -- Pedotti diagrams -- 1.2.6. Spatiotemporal parameters in gait -- Spatial parameters of gait -- Temporal parameters of gait -- Cadence, velocity, and symmetry -- Gait speed -- 1.2.7. Measuring joint segment motions -- 1.2.8. Measuring and interpreting pressure -- Peak pressures and loading rate -- Centre of pressure progression -- 1.2.9. Variability in gait -- Influence of terrain on walking gait analysis parameters and kinematics -- 1.2.10. Section summary -- 1.3. Muscle function related to joint motion in gait -- 1.3.1. Introduction -- 1.3.2. Principles of muscle action in gait -- Energetics -- Force vectors and angular momentum in joints -- 1.3.3. Primary muscle function during walking gait -- Stance phase muscle activity -- Preswing and swing phase muscle activity -- 1.3.4. Soft tissue compliance and stiffening of the lower limb -- 1.3.5. The effects on walking of terrain, velocity, and gradient -- The influence of age on inclined/declined surfaces -- Final muscular considerations -- 1.3.6. Muscle activation and dysfunction effects on gait kinematics -- Stance phase muscle function and dysfunction kinematics -- Swing phase muscle function and dysfunction kinematics -- Muscle unit function and dysfunction -- 1.3.7. Section summary -- 1.4. Running gait -- 1.4.1. Introduction -- 1.4.2. Running energetics -- 1.4.3. The running gait cycle.
,
1.4.4. Running models: Work and power phases in running -- Running work and power in considering energetics of gait -- Walking to running and running to walk transitions -- 1.4.5. Impact in running: With consideration to walking -- Mechanics of impact revisited -- Impact amplitude and cushioning -- Cushioning -- Impact implications in running -- 1.4.6. Shock attenuation in the lower limb -- Joint alignment and stiffness in impact dissipation -- Impact dissipation by specialist passive soft tissues -- Impact and pathology -- 1.4.7. Muscle activity in running -- Muscles in running -- Muscle transition with gait speed and technique -- Muscle coactivation -- Tendons in running energetics -- 1.4.8. Spine, pelvis, and arm motion in running -- The role of arm swing in running -- 1.4.9. Running patterns -- Foot strike position -- Advantages of strike positions -- Sprinting -- Distance running -- Effects of fatigue in running -- 1.4.10. Running differences through gender and age -- Male and female runners -- Older runners -- 1.4.11. Foot type and footwear effects on running -- Foot types: Compliance and stiffness -- Injury rates associated with foot vault profile -- Footwear biomechanics in running -- Running footwear design -- Midsole cushioning -- Midsole stiffness -- Motion control and stability -- Running footwear and foot vaults -- 1.4.12. The effects of running terrain -- 1.4.13. Section summary -- 1.5. Variance in gait -- 1.5.1. Introduction -- 1.5.2. Gender and other morphological differences in walking gait -- Effects of height -- The effects of lower limb alignment -- 1.5.3. Foot function variance in gait -- Classifying pes planus -- Pes planus effects on gait -- Midtarsal (midfoot) break during gait -- Pes cavus in gait -- 1.5.4. Joint hypermobility in gait -- 1.5.5. Gait in pregnancy -- 1.5.6. Paediatric gait.
,
The development of gait characteristics -- Kinematic changes -- Maturation of gait -- Adolescent gait -- Other influences on childhood gait -- Gait in paediatric pes planus -- Paediatric equinus -- 1.5.7. Ageing and aged-like gait -- Ageing of gait -- Changing gait strategy with age -- Endurance and fatigue in walking -- 1.5.8. Leg length discrepancy/inequality -- 1.5.9. The effects of footwear on gait -- 1.5.10. Gait in lower limb amputees -- Spatiotemporal changes in amputees -- Changes in joint angles and moments resulting from amputation -- Effects of bilateral amputation on gait -- 1.5.11. Section summary -- 1.6. Gait in disease -- 1.6.1. Introduction -- 1.6.2. Gait in cerebral palsy -- 1.6.3. Gait in musculoskeletal disease -- Arthritis -- Musculoskeletal soft tissue failures -- 1.6.4. Gait in neurological disease -- 1.6.5. Gait in peripheral vascular disease -- 1.6.6. Gait in diabetes (mellitus) -- 1.6.7. Section summary -- Chapter summary -- References -- Chapter 2: Locomotive functional units -- Chapter introduction -- 2.1. Soft and hard tissue as functional units -- 2.1.1. Introduction -- 2.1.2. Principles of tensegrity and biotensegrity revisited -- 2.1.3. Maintenance of biotensegrity structures -- Clinical implications of the biotensegrity model -- Soft tissue dysfunction in human biotensegrity -- 2.1.4. Principles of core stability -- 2.1.5. Muscles role in stability-mobility -- Muscle-tendon complexes -- 2.1.6. Principles of articular motion and stability -- 2.1.7. Concepts of muscle joint relationships -- 2.1.8. Concepts of form and force closure -- 2.1.9. Concepts of joint packing, congruency, and neutral -- Clinical implications of joint stability -- 2.1.10. The skeletal frame -- 2.1.11. Section summary -- 2.2. Functional unit of the lumbar spine and pelvis -- 2.2.1. Introduction.
,
2.2.2. The kinematic role of the lumbar spine and pelvis -- In-phase and antiphase motion -- 2.2.3. The spine and pelvis as a biotensegrity structure -- 2.2.4. Functional anatomy of the lumbar spine and pelvis -- Lumbar vertebrae and the lumbosacral joint -- Vertebral bodies and intervertebral discs -- The 4th-5th (L4-L5) lumbar spine articulation -- The lumbosacral joint -- The pelvis and sacroiliac (SI) joint -- Pelvic tilt angle -- 2.2.5. Passive soft tissues of the lumbar spine and pelvis -- Pelvic ligaments -- Intrinsic ligaments -- Extrinsic ligaments -- 2.2.6. Functional joint axes and load distribution of the lumbar spine and pelvis -- 2.2.7. Muscle action at the lumbar spine and pelvis -- Thoracolumbar fascia -- Latissimus dorsi -- Erector spinae muscle -- Multifidus -- Quadratus lumborum -- The abdominal aponeurosis and wall muscles -- External abdominal oblique -- Internal abdominal oblique -- Transversus abdominis -- Rectus abdominis -- Function of the muscles and aponeuroses of the abdominal wall -- Hip muscle influence on lumbopelvic function -- Iliopsoas -- Gluteus maximus -- 2.2.8. Adaptation and pathology in the lumbar spine and pelvis -- 2.2.9. Section summary -- 2.3. Functional unit of the hip -- 2.3.1. Introduction -- 2.3.2. The kinematic role of the hip -- 2.3.3. The hip as a biotensegrity structure -- 2.3.4. Osseous topography of the hip -- Acetabular anteversion -- Femoral neck-shaft angle -- Femoral anteversion -- Femoral loading patterns -- 2.3.5. Passive soft tissues of the hip -- Hip ligaments -- Fascia lata -- 2.3.6. The hip in lever systems -- Instantaneous joint axis of the hip -- Lever arms of the hip -- Sagittal plane levers -- Frontal plane lever -- 2.3.7. Muscle action at the hip -- Hip flexors -- Hip extensors -- Deep hip rotators -- Hip adductors -- Hip abductors -- Hip muscle stabilisation.
,
2.3.8. Adaptation and pathology in the hip.
Weitere Ausg.:
Print version: Horwood, Andrew Clinical Biomechanics in Human Locomotion San Diego : Elsevier Science & Technology,c2023 ISBN 9780443158605
Sprache:
Englisch
Bookmarklink