Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    almahu_9949983417602882
    Umfang: 1 online resource (680 pages)
    Ausgabe: First edition.
    ISBN: 9780443161483 , 0443161488
    Serie: Uncertainty, Computational Techniques, and Decision Intelligence Series
    Inhalt: This book is part of the Computational Techniques, and Decision Intelligence series and focuses on advanced computational methods and decision-making processes using artificial intelligence. It covers a range of topics including neural networks, artificial intelligence algorithms, metaheuristic algorithms, optimization problems, and machine learning techniques. The book aims to provide insights into the application of these technologies in fields such as software testing, sustainable supply chain management, and data analysis. Edited by Tofigh Allahviranloo and Witold Pedrycz, it offers a comprehensive overview of both theoretical foundations and practical implementations. The intended audience includes researchers, practitioners, and students in engineering, computer science, and related disciplines.
    Anmerkung: Intro -- Decision-Making Models -- Copyright -- Contents -- Contributors -- Preface -- Section 1: Decision-making: New developments -- Chapter 1: Neural networks -- 1.1. Introduction and motivation -- 1.2. Neural networks overview -- 1.3. Exploring advanced neural network concepts -- 1.4. Neural networks and decision-making -- References -- Chapter 2: Artificial intelligent algorithms, motivation, and terminology -- 2.1. Introduction to artificial intelligence -- 2.2. Types of AI algorithms -- 2.2.1. Supervised learning -- 2.2.2. Unsupervised learning -- 2.2.3. Semisupervised learning -- 2.2.4. Reinforcement learning -- 2.2.5. Ensemble learning -- 2.2.6. Deep learning -- 2.2.7. Neural networks -- 2.2.8. Convolutional neural networks (CNNs) -- 2.2.9. Recurrent neural networks (RNNs) -- 2.2.10. Generative adversarial networks (GANs) -- 2.2.11. Heuristic algorithms -- 2.2.12. Metaheuristic algorithms -- 2.3. Types of problems solved using artificial intelligence algorithms -- 2.4. Evolution of AI algorithms -- References -- Chapter 3: Decision process: A stakeholder-oriented video conferencing software selection in sustainable distance education -- 3.1. Introduction -- 3.2. Literature review -- 3.3. Background -- 3.3.1. Rational decision-making model -- 3.3.2. Bounded rationality decision-making model -- 3.3.3. Intuitive decision-making model -- 3.3.4. Creative decision-making model -- 3.4. Method -- 3.4.1. Preliminaries of picture fuzzy sets (PFSs) -- 3.4.2. MACTOR method -- 3.4.3. Proposed PF-MACTOR method -- 3.5. Analysis and findings -- 3.5.1. Stakeholders of SDE -- 3.5.2. Objectives of SDE -- 3.5.3. Application of PF-MACTOR method and findings -- 3.6. Discussion -- 3.7. Conclusions -- References -- Chapter 4: Learning theory -- 4.1. Introduction to learning theory -- 4.2. Ethical considerations in learning models. , 4.3. Learning theory and decision-making -- 4.4. Future directions in learning theory -- References -- Section 2: Metaheuristic algorithms -- Chapter 5: A comprehensive survey: Nature-inspired algorithms -- 5.1. Nature-inspired algorithms: What are they? -- 5.2. Motivation -- 5.3. Optimization -- 5.4. No-free-lunch -- 5.5. Nature-inspired metaheuristics -- References -- Chapter 6: A comprehensive survey: Physics-based algorithms -- 6.1. Introduction -- 6.2. Physics-based algorithms -- 6.2.1. Gravitational search algorithm -- 6.2.2. Atom search optimization -- 6.2.3. Sonar-inspired optimization -- 6.2.4. Vortex search algorithm -- 6.2.5. Lightning search algorithm -- 6.2.6. RIME: A physics-based optimization -- 6.2.7. Henry gas solubility optimization -- 6.2.8. Multiverse optimizer -- 6.3. Simulation results -- References -- Chapter 7: A comprehensive survey: Evolutionary-based algorithms -- 7.1. Introduction -- 7.2. Evolutionary strategy -- 7.3. Genetic algorithm -- 7.4. Genetic programming -- 7.5. Differential evolution -- 7.6. Discussion -- References -- Chapter 8: A comprehensive survey: Swarm-based algorithms -- 8.1. Introduction -- 8.2. Ant colony optimization -- 8.3. Cat swarm optimization -- 8.4. Elephant herding optimization -- 8.5. Gray wolf optimization -- 8.6. Harris hawks optimization -- 8.7. Marine predators algorithm -- 8.8. Particle swarm optimization -- 8.9. Sand cat swarm optimization -- 8.10. Case study: Kinematics PUMA 560 -- References -- Chapter 9: Single and multi-objective metaheuristic algorithms and their applications in software maintenance -- 9.1. Introduction and motivation -- 9.2. Literature review -- 9.3. Heuristic-based software module clustering -- 9.3.1. Definition of the problem -- 9.3.2. Algorithm structure -- 9.3.3. Objective function -- 9.4. Experiments and results -- 9.4.1. Experiments platform -- 9.4.2. Results. , 9.5. Conclusion -- References -- Chapter 10: Constraint-based heuristic algorithms for software test generation -- 10.1. Introduction and motivation -- 10.2. Literature review -- 10.3. Heuristic-based test data generation -- 10.3.1. Generating test data -- 10.3.2. Fitness function -- 10.4. Results and discussion -- 10.4.1. Implementation -- 10.4.2. Benchmarks -- 10.4.3. Evaluation -- 10.5. Conclusion -- References -- Chapter 11: Discretized optimization algorithms for finding the bug-prone locations of a program source code -- 11.1. Introduction and motivation -- 11.2. Literature review -- 11.3. Identifying the bug-prone paths of the programs -- 11.4. Experiments and results -- 11.5. Conclusion -- References -- Section 3: Optimization problems -- Chapter 12: Mathematical programming -- 12.1. Introduction -- 12.2. Types of mathematical programming -- 12.3. Basic concepts -- 12.4. Simplex algorithm -- 12.5. Nonlinear programming -- 12.5.1. Unconstrained problems -- 12.6. Constrained problems with equality constraints -- 12.7. Lagrange multiplier method -- 12.8. Unconstrained problem with inequality constraints -- 12.9. Double search -- 12.10. Interval bisection method -- 12.11. Conclusion -- Acknowledgment -- References -- Chapter 13: Discrete and combinatorial optimization -- 13.1. Introduction -- 13.1.1. Various optimization problems are divided into the following two categories -- 13.2. Examining search and optimization methods -- 13.2.1. Enumerative methods -- 13.2.2. Calculation methods (mathematical search or-based method calculus) -- 13.2.3. Innovative and meta-innovative methods (random search) -- 13.2.4. Combinational optimization problems -- 13.2.5. The method of solving combined optimization problems -- 13.2.5.1. Relaxation -- 13.2.5.2. Analysis -- 13.2.5.3. Column generation method -- 13.2.5.4. Constructive search. , 13.2.5.5. Improving search -- 13.2.6. Neighborhood search method -- 13.2.7. Metaheuristic methods derived from nature -- 13.2.8. Traveling salesman problem (TSP) -- 13.3. Integer programming -- 13.3.1. Solution methods -- 13.3.1.1. Cutting plane method -- 13.3.1.2. Mixed algorithm -- 13.4. Branch-and-bound method -- 13.5. Additive algorithm for pure binary problem -- 13.5.1. Branch and bound zero-one tree -- 13.6. The Transportation problem -- 13.6.1. Fogel's approximation method -- 13.7. Find the optimum solution of transportation problem -- 13.8. Conclusion -- Acknowledgment -- References -- Chapter 14: Data optimization and analysis -- 14.1. Introduction -- 14.2. Data envelopment analysis -- 14.3. Network data envelopment analysis -- 14.4. Progress and regress -- 14.5. Ranking -- 14.6. Data analysis and support vector machines -- 14.6.1. Separable state and data clustering -- 14.6.2. Nonseparable state -- 14.6.3. Nonlinear SVM -- 14.6.4. Separable SVMs in multiple categories -- 14.6.5. SVM applications -- 14.7. Conclusion -- Acknowledgment -- References -- Chapter 15: Applied optimization problems -- 15.1. Introduction -- 15.2. Linear Programming -- 15.3. Integer programing -- 15.4. Nonlinear programming -- 15.5. Network programing -- 15.6. Inventory -- 15.7. Calculus of variations -- 15.8. Risk measurement -- 15.8.1. Standard risk measures, value-at-risk (VaR) -- 15.9. Mean-variance analysis -- 15.9.1. Diversification effect -- 15.10. Multiperiod binomial model -- 15.11. Queuing theory optimization -- 15.12. Supply chain concept and its applications -- 15.12.1. Applications of data envelopment analysis (DEA) in supply chain -- 15.13. Multiobjective optimization is an optimization -- 15.13.1. Applications of multiobjective optimization -- 15.13.2. Applications of optimization in reliability models. , 15.13.3. Classic reliability optimization models -- 15.13.4. Presenting a series-parallel redundancy allocation problem (RAP) -- 15.13.5. Reliability optimization of a k-out-of-n series-parallel system -- 15.14. Conclusion -- Acknowledgment -- References -- Chapter 16: Engineering optimization -- 16.1. Introduction -- 16.2. Types of optimization problems -- 16.2.1. ``Continuous´´ and ``discrete´´ optimization problems -- 16.2.2. ``Constrained´´ and ``unconstrained´´ optimization problems -- 16.2.3. ``Deterministic´´ and ``stochastic´´ optimization problems -- 16.2.4. Nonobjective, single-objective, and multiobjective optimization problems -- 16.2.5. Heuristic and meta-heuristic methods (random search) -- 16.3. Engineering optimization -- 16.3.1. Types of selected engineering optimization methods -- 16.3.2. Deterministic and probabilistic optimization algorithms -- 16.3.3. Direct and indirect optimization algorithms -- 16.3.4. Heuristic and metaheuristic optimization algorithm -- 16.3.4.1. Genetic algorithm -- 16.3.4.2. Simulated annealing -- 16.3.4.3. Tabu search -- 16.3.4.4. Particle swarm optimization algorithm -- 16.3.5. Comparison and selection of the appropriate optimization method -- 16.3.6. Advantages of the genetic algorithm compared to other optimization methods in engineering -- 16.4. Conclusion -- References -- Section 4: Machine learning -- Chapter 17: Deep learning -- 17.1. Introduction and motivation -- 17.2. Background -- 17.3. Literature review -- 17.4. Minatar -- 17.5. Results and discussions -- 17.6. Conclusion -- References -- Chapter 18: (Artificial) neural networks -- 18.1. Introduction and motivation -- 18.2. Literature review -- 18.3. Artificial neural networks -- 18.4. Dataset -- 18.5. Experiments and results -- 18.6. Conclusion -- References -- Chapter 19: Reinforcement learning algorithms -- 19.1. Introduction and motivation. , 19.2. Literature review.
    Weitere Ausg.: ISBN 9780443161476
    Weitere Ausg.: ISBN 044316147X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    UID:
    edoccha_9961612420702883
    Umfang: 1 online resource (680 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443161483
    Serie: Uncertainty, Computational Techniques, and Decision Intelligence Series
    Anmerkung: Intro -- Decision-Making Models -- Copyright -- Contents -- Contributors -- Preface -- Section 1: Decision-making: New developments -- Chapter 1: Neural networks -- 1.1. Introduction and motivation -- 1.2. Neural networks overview -- 1.3. Exploring advanced neural network concepts -- 1.4. Neural networks and decision-making -- References -- Chapter 2: Artificial intelligent algorithms, motivation, and terminology -- 2.1. Introduction to artificial intelligence -- 2.2. Types of AI algorithms -- 2.2.1. Supervised learning -- 2.2.2. Unsupervised learning -- 2.2.3. Semisupervised learning -- 2.2.4. Reinforcement learning -- 2.2.5. Ensemble learning -- 2.2.6. Deep learning -- 2.2.7. Neural networks -- 2.2.8. Convolutional neural networks (CNNs) -- 2.2.9. Recurrent neural networks (RNNs) -- 2.2.10. Generative adversarial networks (GANs) -- 2.2.11. Heuristic algorithms -- 2.2.12. Metaheuristic algorithms -- 2.3. Types of problems solved using artificial intelligence algorithms -- 2.4. Evolution of AI algorithms -- References -- Chapter 3: Decision process: A stakeholder-oriented video conferencing software selection in sustainable distance education -- 3.1. Introduction -- 3.2. Literature review -- 3.3. Background -- 3.3.1. Rational decision-making model -- 3.3.2. Bounded rationality decision-making model -- 3.3.3. Intuitive decision-making model -- 3.3.4. Creative decision-making model -- 3.4. Method -- 3.4.1. Preliminaries of picture fuzzy sets (PFSs) -- 3.4.2. MACTOR method -- 3.4.3. Proposed PF-MACTOR method -- 3.5. Analysis and findings -- 3.5.1. Stakeholders of SDE -- 3.5.2. Objectives of SDE -- 3.5.3. Application of PF-MACTOR method and findings -- 3.6. Discussion -- 3.7. Conclusions -- References -- Chapter 4: Learning theory -- 4.1. Introduction to learning theory -- 4.2. Ethical considerations in learning models. , 4.3. Learning theory and decision-making -- 4.4. Future directions in learning theory -- References -- Section 2: Metaheuristic algorithms -- Chapter 5: A comprehensive survey: Nature-inspired algorithms -- 5.1. Nature-inspired algorithms: What are they? -- 5.2. Motivation -- 5.3. Optimization -- 5.4. No-free-lunch -- 5.5. Nature-inspired metaheuristics -- References -- Chapter 6: A comprehensive survey: Physics-based algorithms -- 6.1. Introduction -- 6.2. Physics-based algorithms -- 6.2.1. Gravitational search algorithm -- 6.2.2. Atom search optimization -- 6.2.3. Sonar-inspired optimization -- 6.2.4. Vortex search algorithm -- 6.2.5. Lightning search algorithm -- 6.2.6. RIME: A physics-based optimization -- 6.2.7. Henry gas solubility optimization -- 6.2.8. Multiverse optimizer -- 6.3. Simulation results -- References -- Chapter 7: A comprehensive survey: Evolutionary-based algorithms -- 7.1. Introduction -- 7.2. Evolutionary strategy -- 7.3. Genetic algorithm -- 7.4. Genetic programming -- 7.5. Differential evolution -- 7.6. Discussion -- References -- Chapter 8: A comprehensive survey: Swarm-based algorithms -- 8.1. Introduction -- 8.2. Ant colony optimization -- 8.3. Cat swarm optimization -- 8.4. Elephant herding optimization -- 8.5. Gray wolf optimization -- 8.6. Harris hawks optimization -- 8.7. Marine predators algorithm -- 8.8. Particle swarm optimization -- 8.9. Sand cat swarm optimization -- 8.10. Case study: Kinematics PUMA 560 -- References -- Chapter 9: Single and multi-objective metaheuristic algorithms and their applications in software maintenance -- 9.1. Introduction and motivation -- 9.2. Literature review -- 9.3. Heuristic-based software module clustering -- 9.3.1. Definition of the problem -- 9.3.2. Algorithm structure -- 9.3.3. Objective function -- 9.4. Experiments and results -- 9.4.1. Experiments platform -- 9.4.2. Results. , 9.5. Conclusion -- References -- Chapter 10: Constraint-based heuristic algorithms for software test generation -- 10.1. Introduction and motivation -- 10.2. Literature review -- 10.3. Heuristic-based test data generation -- 10.3.1. Generating test data -- 10.3.2. Fitness function -- 10.4. Results and discussion -- 10.4.1. Implementation -- 10.4.2. Benchmarks -- 10.4.3. Evaluation -- 10.5. Conclusion -- References -- Chapter 11: Discretized optimization algorithms for finding the bug-prone locations of a program source code -- 11.1. Introduction and motivation -- 11.2. Literature review -- 11.3. Identifying the bug-prone paths of the programs -- 11.4. Experiments and results -- 11.5. Conclusion -- References -- Section 3: Optimization problems -- Chapter 12: Mathematical programming -- 12.1. Introduction -- 12.2. Types of mathematical programming -- 12.3. Basic concepts -- 12.4. Simplex algorithm -- 12.5. Nonlinear programming -- 12.5.1. Unconstrained problems -- 12.6. Constrained problems with equality constraints -- 12.7. Lagrange multiplier method -- 12.8. Unconstrained problem with inequality constraints -- 12.9. Double search -- 12.10. Interval bisection method -- 12.11. Conclusion -- Acknowledgment -- References -- Chapter 13: Discrete and combinatorial optimization -- 13.1. Introduction -- 13.1.1. Various optimization problems are divided into the following two categories -- 13.2. Examining search and optimization methods -- 13.2.1. Enumerative methods -- 13.2.2. Calculation methods (mathematical search or-based method calculus) -- 13.2.3. Innovative and meta-innovative methods (random search) -- 13.2.4. Combinational optimization problems -- 13.2.5. The method of solving combined optimization problems -- 13.2.5.1. Relaxation -- 13.2.5.2. Analysis -- 13.2.5.3. Column generation method -- 13.2.5.4. Constructive search. , 13.2.5.5. Improving search -- 13.2.6. Neighborhood search method -- 13.2.7. Metaheuristic methods derived from nature -- 13.2.8. Traveling salesman problem (TSP) -- 13.3. Integer programming -- 13.3.1. Solution methods -- 13.3.1.1. Cutting plane method -- 13.3.1.2. Mixed algorithm -- 13.4. Branch-and-bound method -- 13.5. Additive algorithm for pure binary problem -- 13.5.1. Branch and bound zero-one tree -- 13.6. The Transportation problem -- 13.6.1. Fogel's approximation method -- 13.7. Find the optimum solution of transportation problem -- 13.8. Conclusion -- Acknowledgment -- References -- Chapter 14: Data optimization and analysis -- 14.1. Introduction -- 14.2. Data envelopment analysis -- 14.3. Network data envelopment analysis -- 14.4. Progress and regress -- 14.5. Ranking -- 14.6. Data analysis and support vector machines -- 14.6.1. Separable state and data clustering -- 14.6.2. Nonseparable state -- 14.6.3. Nonlinear SVM -- 14.6.4. Separable SVMs in multiple categories -- 14.6.5. SVM applications -- 14.7. Conclusion -- Acknowledgment -- References -- Chapter 15: Applied optimization problems -- 15.1. Introduction -- 15.2. Linear Programming -- 15.3. Integer programing -- 15.4. Nonlinear programming -- 15.5. Network programing -- 15.6. Inventory -- 15.7. Calculus of variations -- 15.8. Risk measurement -- 15.8.1. Standard risk measures, value-at-risk (VaR) -- 15.9. Mean-variance analysis -- 15.9.1. Diversification effect -- 15.10. Multiperiod binomial model -- 15.11. Queuing theory optimization -- 15.12. Supply chain concept and its applications -- 15.12.1. Applications of data envelopment analysis (DEA) in supply chain -- 15.13. Multiobjective optimization is an optimization -- 15.13.1. Applications of multiobjective optimization -- 15.13.2. Applications of optimization in reliability models. , 15.13.3. Classic reliability optimization models -- 15.13.4. Presenting a series-parallel redundancy allocation problem (RAP) -- 15.13.5. Reliability optimization of a k-out-of-n series-parallel system -- 15.14. Conclusion -- Acknowledgment -- References -- Chapter 16: Engineering optimization -- 16.1. Introduction -- 16.2. Types of optimization problems -- 16.2.1. ``Continuous´´ and ``discrete´´ optimization problems -- 16.2.2. ``Constrained´´ and ``unconstrained´´ optimization problems -- 16.2.3. ``Deterministic´´ and ``stochastic´´ optimization problems -- 16.2.4. Nonobjective, single-objective, and multiobjective optimization problems -- 16.2.5. Heuristic and meta-heuristic methods (random search) -- 16.3. Engineering optimization -- 16.3.1. Types of selected engineering optimization methods -- 16.3.2. Deterministic and probabilistic optimization algorithms -- 16.3.3. Direct and indirect optimization algorithms -- 16.3.4. Heuristic and metaheuristic optimization algorithm -- 16.3.4.1. Genetic algorithm -- 16.3.4.2. Simulated annealing -- 16.3.4.3. Tabu search -- 16.3.4.4. Particle swarm optimization algorithm -- 16.3.5. Comparison and selection of the appropriate optimization method -- 16.3.6. Advantages of the genetic algorithm compared to other optimization methods in engineering -- 16.4. Conclusion -- References -- Section 4: Machine learning -- Chapter 17: Deep learning -- 17.1. Introduction and motivation -- 17.2. Background -- 17.3. Literature review -- 17.4. Minatar -- 17.5. Results and discussions -- 17.6. Conclusion -- References -- Chapter 18: (Artificial) neural networks -- 18.1. Introduction and motivation -- 18.2. Literature review -- 18.3. Artificial neural networks -- 18.4. Dataset -- 18.5. Experiments and results -- 18.6. Conclusion -- References -- Chapter 19: Reinforcement learning algorithms -- 19.1. Introduction and motivation. , 19.2. Literature review.
    Weitere Ausg.: Print version: Allahviranloo, Tofigh Decision-Making Models San Diego : Elsevier Science & Technology,c2024 ISBN 9780443161476
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    gbv_1879811227
    Umfang: xv, 661 Seiten , Diagramme
    ISBN: 9780443161476
    Serie: Uncertainty, computational techniques, and decision intelligence book series
    Inhalt: Decision-making models: a perspective of fuzzy logic and machine learning presents the latest developments in the field of uncertain mathematics and decision science. The book aims to deliver a systematic exposure to soft computing techniques in fuzzy mathematics as well as artificial intelligence in the context of real-life problems and is designed to address recent techniques to solving uncertain problems encountered specifically in decision sciences. Researchers, professors, software engineers, and graduate students working in the fields of applied mathematics, software engineering, and artificial intelligence will find this book useful to acquire a solid foundation in fuzzy logic and fuzzy systems.Other areas of note include optimization problems and artificial intelligence practices, as well as how to analyze IoT solutions with applications and develop decision-making mechanisms realized under uncertainty
    Anmerkung: Literaturangaben , Section 1: Decision Making: New Developments1. Neural networks2. Artificial intelligent algorithms, motivation and terminology3. Decision processes4. Learning theorySection 2: Metaheuristic Algorithms5. Nature-inspired algorithms6. Physic-based algorithms7. evolution-based algorithms8. swarm-based algorithms9. Multi-objective algorithms10. Unconstrained / constrained nonlinear optimization11. Evolutionary ComputingSection 3: Optimization Problems12. Mathematical Programming13. Discrete and Combinatorial Optimization14. Optimization and Data Analysis15. Applied optimization problems16. Engineering problemsSection 4: Machine Learning17. Deep Learning18. (Artificial) Neural Networks19. Reinforcement Learning Algorithms20. Classification and clusteringSection 5: Soft Computation21. Uncertainty theory22. Fuzzy sets23. Computation with words24. Soft modelling25. Uncertain optimization models26. Chaos theory and chaotic systemsSection 6: Data Analysis27. Data mining and knowledge discovery28. Categories of techniques of data analysis29. Numerical analysis30. Risk analysisSection 7: Fuzzy Decision System31. Fuzzy Control32. Approximate Reasoning33. Effectiveness in Fuzzy Logics34. Neuro-fuzzy Systems35. Fuzzy rule-based systems
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Allahviranloo, Tofigh Decision-Making Models San Diego : Elsevier Science & Technology, 2024 ISBN 9780443161483
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Entscheidungsfindung ; Fuzzy-Logik ; Maschinelles Lernen
    Mehr zum Autor: Pedrycz, Witold 1953-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443158476?
Meinten Sie 9780443160479?
Meinten Sie 9780443161216?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz