Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge, Massachusetts :Elsevier Ltd.,
    UID:
    almahu_9949982499302882
    Umfang: 1 online resource (552 pages)
    Ausgabe: Second edition.
    ISBN: 9780443186035
    Serie: Woodhead Publishing Series in Composites Science and Engineering Series
    Inhalt: The 'Handbook of Advances in Braided Composite Materials' is a comprehensive resource exploring the theory, production, testing, and applications of braided composite materials. Edited by Jason P. Carey, a professor of Mechanical Engineering, this second edition delves into the manufacturing processes, advanced testing, and predictive modeling of braided composites. It covers topics such as braid manufacturing, the behavior of braided composites, and design considerations. The book also discusses the future trends in composite materials, including green composites and nano-enhancements. Intended for professionals and researchers in mechanical and materials engineering, it provides detailed insights into the technological advancements and practical applications of braided composites.
    Anmerkung: Intro -- Handbook of Advances in Braided Composite Materials: Theory, Production, Testing and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Introduction to braided composites -- 1.1. Introduction -- 1.2. Basic concepts -- 1.2.1. What are composite materials? -- 1.2.2. What are braided composites? -- 1.3. Basic materials -- 1.3.1. Fibers -- 1.3.2. Resins -- 1.4. Book content -- 1.5. Short commentary on likely future trends -- 1.6. Sources of further information and advice -- References -- Chapter 2: Working with the braided composite app -- 2.1. Introduction -- 2.2. Main menu -- 2.3. Micromechanics -- 2.4. Lamina strength -- 2.5. Coordinate system transformation -- 2.6. Braid manufacturing -- 2.6.1. Braid volume fraction -- 2.7. Braid angle measurement -- 2.8. Braid machine setup -- 2.9. Installation instructions -- 2.9.1. Android -- 2.9.2. Source code -- 2.10. Conclusions -- References -- Part One: Manufacturing and advanced testing of braided composite materials -- Chapter 3: Manufacturing processes for braided composite materials -- 3.1. Introduction -- 3.2. Basic components of a braiding machine -- 3.2.1. Horn gears -- 3.2.2. Carriers -- 3.2.3. Bobbins -- 3.2.4. Carrier track -- 3.2.5. Take-up mechanism -- 3.2.6. Forming ring (guide ring) -- 3.3. Types of braiders -- 3.3.1. Maypole braider -- 3.3.2. Triaxial braider -- 3.3.3. Flat braider -- 3.3.4. Rotary braider -- 3.3.5. Radial braider -- 3.3.6. Three-dimensional braiders -- 3.3.7. 3D rotary braiding -- 3.3.8. Application of model to complex shapes -- 3.3.9. Hybrid braids -- 3.3.10. Cross-shape variation along the braid length -- 3.3.11. Machinery for 3D braids -- 3.3.12. Track-and-column braiding -- 3.3.12.1. MagnaWeave braiding -- 3.3.12.2. AYPEX braiding -- 3.3.12.3. Hexagonal braiding -- 3.3.12.4. First-generation hexagonal braider. , 3.3.12.5. Second-generation hexagonal braider -- 3.4. Variables of braiding -- 3.4.1. Pick count -- 3.4.2. Braid angle -- 3.4.3. Braiding formation variables -- 3.4.4. Jam angle -- 3.4.5. Cover factor -- 3.4.6. Fiber volume fraction -- 3.5. Two-dimensional braiding versus filament winding1 -- 3.5.1. Basic concepts -- 3.5.2. Design vs. manufacturing considerations -- 3.5.2.1. Overall dimensional considerations -- 3.5.3. Manufacturing considerations -- 3.5.4. Load carrying capabilities -- 3.5.5. Resultant mechanical properties -- 3.6. Kinematics of braiding manufacturing -- 3.6.1. History of kinematic modeling of the braiding process -- 3.6.2. Challenges -- 3.6.3. Recent advances in modeling the circular braiding process -- 3.7. Process selection for 3D braiding -- 3.7.1. Constant cross-section parts -- 3.7.2. Cylindrical braiding -- 3.7.3. Hexagonal braiding -- 3.7.3.1. Fiber architecture -- 3.7.3.2. Ideal tubular, bifurcated structure -- 3.7.4. Geometrical requirements -- 3.7.5. Braid parameters -- 3.7.6. Bifurcated structures -- 3.7.6.1. Track-and-column process -- 3.7.6.2. Production of a bifurcated track-and-column braid -- 3.7.7. Production of tubular structures -- 3.7.7.1. Production of bifurcated, tubular structures -- 3.8. Benefits of yarn twist -- 3.9. Quality of impregnation -- 3.10. Production quality control -- 3.11. The cost of braided composite materials -- 3.11.1. Material costs -- 3.11.2. Manufacturing costs -- 3.11.3. Assembly costs -- 3.11.4. Inspection costs -- 3.12. Automation -- 3.12.1. Production of the fiber structure -- 3.12.2. Fiber consolidation process -- 3.13. Conclusions -- 3.14. Future trends -- 3.15. Sources of further information and advice -- Appendix -- Example of manufacturing process: Setup of braider Steeger USA K80-72 (Steeger USA, Inman, South Carolina) for different pr ... -- References. , Chapter 4: Advanced testing of braided composite materials -- 4.1. Introduction -- 4.2. Measurement techniques -- 4.2.1. Common measurement techniques -- 4.2.2. Advanced measurement techniques -- 4.2.2.1. Digital image correlation for strain measurement -- 4.2.2.2. Computed tomography -- 4.3. Characterization of braided composite constituent materials -- 4.3.1. Braided composite density -- 4.3.2. Reinforcement and matrix content measurement -- 4.3.3. Void volume fraction -- 4.4. Braided composite geometric measurements -- 4.4.1. Braid angle -- 4.4.1.1. ISO 10122 Section 7.2.5.1 braid angle measurement -- 4.4.1.2. Automated braid angle measurements -- 4.4.2. Tubular braid geometry measurement -- 4.5. Braided composite testing methods: Static loading -- 4.5.1. Standard test methods -- 4.5.2. In-plane tensile testing -- 4.5.3. Flexural testing of braided composites -- 4.5.4. Compression -- 4.5.5. Shear -- 4.5.6. Damage resistance -- 4.6. Fatigue testing -- 4.6.1. Available testing methods -- 4.6.2. Tension-tension fatigue testing -- 4.6.3. Tension-tension fatigue tests in literature -- 4.6.4. Flexural fatigue tests -- 4.7. Braided composites with holes -- 4.7.1. Open-hole tensile tests -- 4.7.2. Open-hole compression testing -- 4.7.3. Open-hole fatigue testing -- 4.7.4. Bearing response of braided composites with holes -- 4.8. Test methods for tubular braided composites -- 4.9. Test methods for 3D braided composites -- 4.10. Comparison of two- and three-dimensional braided composites properties -- 4.11. Conclusion and summary -- 4.12. Future trends -- 4.13. Sources of further information and advice -- References -- Chapter 5: Microcomputed tomography analysis of braided composites -- 5.1. Introduction -- 5.2. X-ray CT operating principle -- 5.2.1. Cone beam CT -- 5.2.2. Medical-grade CT -- 5.2.3. MicroCT -- 5.2.4. NanoCT -- 5.2.5. Synchrotron CT. , 5.3. Image processing of CT images -- 5.3.1. Image reconstruction -- 5.3.2. Image artifacts -- 5.3.2.1. Poisson noise -- 5.3.2.2. Ring artifacts -- 5.3.2.3. Beam hardening -- 5.3.2.4. Metal artifacts -- 5.3.3. Image processing -- 5.3.3.1. Intensity transformations and spatial filtering -- 5.3.4. Spatial filtering -- 5.3.4.1. Low pass filter (smoothing) -- 5.3.4.2. High pass filter (sharpening) -- 5.3.4.3. Filtering -- 5.3.4.4. Image segmentation -- 5.3.4.5. Morphological image processing -- 5.4. Review of CT analysis of braided composites -- 5.4.1. Voids analysis -- 5.4.2. Geometrical models and finite element analysis simulations -- 5.4.3. Progressive damage for braided composite structures -- 5.5. Reporting data for CT analysis -- 5.5.1. Summary of scan settings for braided composites -- 5.5.2. Computed tomography analysis software -- 5.5.2.1. Reconstruction software -- 5.5.2.2. Segmentation and processing software -- 5.5.3. X-ray safety -- 5.6. Conclusions and recommendations -- 5.7. Further reading -- Appendix-Example of braid analysis using MATLAB -- Example of μCT analysis for braided composites -- Load and display image -- Show histogram of image -- Threshold image dataset -- Close holes in image -- Subtract the closed image from the original -- Calculate the size of the voids -- Bar chart of void sizes -- References -- Part Two: Predicting properties and designing braided composite materials -- Chapter 6: Introduction to braided composite material behavior -- 6.1. Introduction -- 6.1.1. Textile structures -- 6.1.2. Overview of composite manufacturing processes -- 6.1.3. Applications -- 6.2. Definitions and geometric concepts -- 6.2.1. Unit cell -- 6.3. Overview of braiding composite manufacturing and challenges -- 6.3.1. Two-dimensional braiding -- 6.3.2. Three-dimensional braiding -- 6.3.3. Joining braids. , 6.3.4. Experimental assessment of components -- 6.4. Behavior -- 6.4.1. Advantages -- 6.4.2. Limitations -- 6.4.3. Properties -- 6.4.3.1. Overview: Elastic behavior -- 6.4.3.2. Overview: Strength and failure -- 6.4.3.3. Overview: Fatigue -- 6.4.3.4. Summary -- 6.5. Introduction to modeling braids -- 6.5.1. Elastic properties -- 6.5.2. Strength and failure -- 6.5.3. Fatigue -- 6.6. Short commentary on likely future trends -- 6.7. Sources of other information -- References -- Chapter 7: Micromechanics for braided composites -- 7.1. Introduction -- 7.2. Basic concepts -- 7.2.1. Coordinate systems -- 7.2.2. Representative volume element (RVE) -- 7.2.3. Volume fraction -- 7.2.4. Unidirectional composite -- 7.2.5. Approaches -- 7.2.5.1. Mechanics of materials -- 7.2.5.2. Elasticity -- 7.3. Stiffness -- 7.3.1. Mechanics of materials approach -- 7.3.1.1. Longitudinal elastic Modulus (E11) -- 7.3.1.2. Transverse elastic modulus (E22) -- 7.3.1.3. Poissons ratio (nu12) -- 7.3.1.4. Shear modulus (G12) -- 7.3.1.5. Summary of mechanics of materials approach -- 7.3.1.6. Application of mechanics of materials approach -- 7.3.2. Elasticity approach and the Halpin-Tsai equations -- 7.3.2.1. Application of Halpin-Tsai equations -- 7.4. Strength -- 7.4.1. Tensile -- 7.4.2. Compressive (buckling) -- 7.4.2.1. Extension mode -- 7.4.2.2. Shear mode -- 7.5. Thermal properties -- 7.6. Conclusion and summary -- 7.7. Future trends -- 7.8. Sources of further information and advice -- References -- Chapter 8: Ply mechanics for braided composite materials -- 8.1. Introduction -- 8.2. Basic concepts -- 8.2.1. Coordinate systems -- 8.2.2. Stress -- 8.2.3. Strain -- 8.3. Stress and strain relationships -- 8.3.1. Generalized Hookes law -- 8.3.1.1. Anisotropic material -- 8.3.1.2. Monoclinic material -- 8.3.1.3. Orthotropic material -- 8.3.1.4. Transversely isotropic. , 8.3.1.5. Isotropic.
    Weitere Ausg.: ISBN 9780443186028
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    UID:
    edoccha_9961564945102883
    Umfang: 1 online resource (552 pages)
    Ausgabe: 2nd ed.
    ISBN: 9780443186035
    Serie: Woodhead Publishing Series in Composites Science and Engineering Series
    Anmerkung: Intro -- Handbook of Advances in Braided Composite Materials: Theory, Production, Testing and Applications -- Copyright -- Contents -- Contributors -- Chapter 1: Introduction to braided composites -- 1.1. Introduction -- 1.2. Basic concepts -- 1.2.1. What are composite materials? -- 1.2.2. What are braided composites? -- 1.3. Basic materials -- 1.3.1. Fibers -- 1.3.2. Resins -- 1.4. Book content -- 1.5. Short commentary on likely future trends -- 1.6. Sources of further information and advice -- References -- Chapter 2: Working with the braided composite app -- 2.1. Introduction -- 2.2. Main menu -- 2.3. Micromechanics -- 2.4. Lamina strength -- 2.5. Coordinate system transformation -- 2.6. Braid manufacturing -- 2.6.1. Braid volume fraction -- 2.7. Braid angle measurement -- 2.8. Braid machine setup -- 2.9. Installation instructions -- 2.9.1. Android -- 2.9.2. Source code -- 2.10. Conclusions -- References -- Part One: Manufacturing and advanced testing of braided composite materials -- Chapter 3: Manufacturing processes for braided composite materials -- 3.1. Introduction -- 3.2. Basic components of a braiding machine -- 3.2.1. Horn gears -- 3.2.2. Carriers -- 3.2.3. Bobbins -- 3.2.4. Carrier track -- 3.2.5. Take-up mechanism -- 3.2.6. Forming ring (guide ring) -- 3.3. Types of braiders -- 3.3.1. Maypole braider -- 3.3.2. Triaxial braider -- 3.3.3. Flat braider -- 3.3.4. Rotary braider -- 3.3.5. Radial braider -- 3.3.6. Three-dimensional braiders -- 3.3.7. 3D rotary braiding -- 3.3.8. Application of model to complex shapes -- 3.3.9. Hybrid braids -- 3.3.10. Cross-shape variation along the braid length -- 3.3.11. Machinery for 3D braids -- 3.3.12. Track-and-column braiding -- 3.3.12.1. MagnaWeave braiding -- 3.3.12.2. AYPEX braiding -- 3.3.12.3. Hexagonal braiding -- 3.3.12.4. First-generation hexagonal braider. , 3.3.12.5. Second-generation hexagonal braider -- 3.4. Variables of braiding -- 3.4.1. Pick count -- 3.4.2. Braid angle -- 3.4.3. Braiding formation variables -- 3.4.4. Jam angle -- 3.4.5. Cover factor -- 3.4.6. Fiber volume fraction -- 3.5. Two-dimensional braiding versus filament winding1 -- 3.5.1. Basic concepts -- 3.5.2. Design vs. manufacturing considerations -- 3.5.2.1. Overall dimensional considerations -- 3.5.3. Manufacturing considerations -- 3.5.4. Load carrying capabilities -- 3.5.5. Resultant mechanical properties -- 3.6. Kinematics of braiding manufacturing -- 3.6.1. History of kinematic modeling of the braiding process -- 3.6.2. Challenges -- 3.6.3. Recent advances in modeling the circular braiding process -- 3.7. Process selection for 3D braiding -- 3.7.1. Constant cross-section parts -- 3.7.2. Cylindrical braiding -- 3.7.3. Hexagonal braiding -- 3.7.3.1. Fiber architecture -- 3.7.3.2. Ideal tubular, bifurcated structure -- 3.7.4. Geometrical requirements -- 3.7.5. Braid parameters -- 3.7.6. Bifurcated structures -- 3.7.6.1. Track-and-column process -- 3.7.6.2. Production of a bifurcated track-and-column braid -- 3.7.7. Production of tubular structures -- 3.7.7.1. Production of bifurcated, tubular structures -- 3.8. Benefits of yarn twist -- 3.9. Quality of impregnation -- 3.10. Production quality control -- 3.11. The cost of braided composite materials -- 3.11.1. Material costs -- 3.11.2. Manufacturing costs -- 3.11.3. Assembly costs -- 3.11.4. Inspection costs -- 3.12. Automation -- 3.12.1. Production of the fiber structure -- 3.12.2. Fiber consolidation process -- 3.13. Conclusions -- 3.14. Future trends -- 3.15. Sources of further information and advice -- Appendix -- Example of manufacturing process: Setup of braider Steeger USA K80-72 (Steeger USA, Inman, South Carolina) for different pr ... -- References. , Chapter 4: Advanced testing of braided composite materials -- 4.1. Introduction -- 4.2. Measurement techniques -- 4.2.1. Common measurement techniques -- 4.2.2. Advanced measurement techniques -- 4.2.2.1. Digital image correlation for strain measurement -- 4.2.2.2. Computed tomography -- 4.3. Characterization of braided composite constituent materials -- 4.3.1. Braided composite density -- 4.3.2. Reinforcement and matrix content measurement -- 4.3.3. Void volume fraction -- 4.4. Braided composite geometric measurements -- 4.4.1. Braid angle -- 4.4.1.1. ISO 10122 Section 7.2.5.1 braid angle measurement -- 4.4.1.2. Automated braid angle measurements -- 4.4.2. Tubular braid geometry measurement -- 4.5. Braided composite testing methods: Static loading -- 4.5.1. Standard test methods -- 4.5.2. In-plane tensile testing -- 4.5.3. Flexural testing of braided composites -- 4.5.4. Compression -- 4.5.5. Shear -- 4.5.6. Damage resistance -- 4.6. Fatigue testing -- 4.6.1. Available testing methods -- 4.6.2. Tension-tension fatigue testing -- 4.6.3. Tension-tension fatigue tests in literature -- 4.6.4. Flexural fatigue tests -- 4.7. Braided composites with holes -- 4.7.1. Open-hole tensile tests -- 4.7.2. Open-hole compression testing -- 4.7.3. Open-hole fatigue testing -- 4.7.4. Bearing response of braided composites with holes -- 4.8. Test methods for tubular braided composites -- 4.9. Test methods for 3D braided composites -- 4.10. Comparison of two- and three-dimensional braided composites properties -- 4.11. Conclusion and summary -- 4.12. Future trends -- 4.13. Sources of further information and advice -- References -- Chapter 5: Microcomputed tomography analysis of braided composites -- 5.1. Introduction -- 5.2. X-ray CT operating principle -- 5.2.1. Cone beam CT -- 5.2.2. Medical-grade CT -- 5.2.3. MicroCT -- 5.2.4. NanoCT -- 5.2.5. Synchrotron CT. , 5.3. Image processing of CT images -- 5.3.1. Image reconstruction -- 5.3.2. Image artifacts -- 5.3.2.1. Poisson noise -- 5.3.2.2. Ring artifacts -- 5.3.2.3. Beam hardening -- 5.3.2.4. Metal artifacts -- 5.3.3. Image processing -- 5.3.3.1. Intensity transformations and spatial filtering -- 5.3.4. Spatial filtering -- 5.3.4.1. Low pass filter (smoothing) -- 5.3.4.2. High pass filter (sharpening) -- 5.3.4.3. Filtering -- 5.3.4.4. Image segmentation -- 5.3.4.5. Morphological image processing -- 5.4. Review of CT analysis of braided composites -- 5.4.1. Voids analysis -- 5.4.2. Geometrical models and finite element analysis simulations -- 5.4.3. Progressive damage for braided composite structures -- 5.5. Reporting data for CT analysis -- 5.5.1. Summary of scan settings for braided composites -- 5.5.2. Computed tomography analysis software -- 5.5.2.1. Reconstruction software -- 5.5.2.2. Segmentation and processing software -- 5.5.3. X-ray safety -- 5.6. Conclusions and recommendations -- 5.7. Further reading -- Appendix-Example of braid analysis using MATLAB -- Example of μCT analysis for braided composites -- Load and display image -- Show histogram of image -- Threshold image dataset -- Close holes in image -- Subtract the closed image from the original -- Calculate the size of the voids -- Bar chart of void sizes -- References -- Part Two: Predicting properties and designing braided composite materials -- Chapter 6: Introduction to braided composite material behavior -- 6.1. Introduction -- 6.1.1. Textile structures -- 6.1.2. Overview of composite manufacturing processes -- 6.1.3. Applications -- 6.2. Definitions and geometric concepts -- 6.2.1. Unit cell -- 6.3. Overview of braiding composite manufacturing and challenges -- 6.3.1. Two-dimensional braiding -- 6.3.2. Three-dimensional braiding -- 6.3.3. Joining braids. , 6.3.4. Experimental assessment of components -- 6.4. Behavior -- 6.4.1. Advantages -- 6.4.2. Limitations -- 6.4.3. Properties -- 6.4.3.1. Overview: Elastic behavior -- 6.4.3.2. Overview: Strength and failure -- 6.4.3.3. Overview: Fatigue -- 6.4.3.4. Summary -- 6.5. Introduction to modeling braids -- 6.5.1. Elastic properties -- 6.5.2. Strength and failure -- 6.5.3. Fatigue -- 6.6. Short commentary on likely future trends -- 6.7. Sources of other information -- References -- Chapter 7: Micromechanics for braided composites -- 7.1. Introduction -- 7.2. Basic concepts -- 7.2.1. Coordinate systems -- 7.2.2. Representative volume element (RVE) -- 7.2.3. Volume fraction -- 7.2.4. Unidirectional composite -- 7.2.5. Approaches -- 7.2.5.1. Mechanics of materials -- 7.2.5.2. Elasticity -- 7.3. Stiffness -- 7.3.1. Mechanics of materials approach -- 7.3.1.1. Longitudinal elastic Modulus (E11) -- 7.3.1.2. Transverse elastic modulus (E22) -- 7.3.1.3. Poissons ratio (nu12) -- 7.3.1.4. Shear modulus (G12) -- 7.3.1.5. Summary of mechanics of materials approach -- 7.3.1.6. Application of mechanics of materials approach -- 7.3.2. Elasticity approach and the Halpin-Tsai equations -- 7.3.2.1. Application of Halpin-Tsai equations -- 7.4. Strength -- 7.4.1. Tensile -- 7.4.2. Compressive (buckling) -- 7.4.2.1. Extension mode -- 7.4.2.2. Shear mode -- 7.5. Thermal properties -- 7.6. Conclusion and summary -- 7.7. Future trends -- 7.8. Sources of further information and advice -- References -- Chapter 8: Ply mechanics for braided composite materials -- 8.1. Introduction -- 8.2. Basic concepts -- 8.2.1. Coordinate systems -- 8.2.2. Stress -- 8.2.3. Strain -- 8.3. Stress and strain relationships -- 8.3.1. Generalized Hookes law -- 8.3.1.1. Anisotropic material -- 8.3.1.2. Monoclinic material -- 8.3.1.3. Orthotropic material -- 8.3.1.4. Transversely isotropic. , 8.3.1.5. Isotropic.
    Weitere Ausg.: ISBN 9780443186028
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443156335?
Meinten Sie 9780443186028?
Meinten Sie 9780443186103?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz