Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
  • 1
    Online-Ressource
    Online-Ressource
    San Diego :Elsevier Science & Technology,
    UID:
    almahu_9949984521902882
    Umfang: 1 online resource (563 pages)
    Ausgabe: 1st ed.
    ISBN: 9780443216695 , 044321669X
    Serie: Woodhead Publishing Series in Electronic and Optical Materials Series
    Inhalt: The book 'Magnetic Nanoparticles in Nanomedicine,' edited by Kai Wu and Jian-Ping Wang, explores the role of magnetic nanoparticles (MNPs) in various applications within the field of nanomedicine. It covers fundamental concepts of magnetism and magnetic materials, micromagnetic simulation tools, and the synthesis of MNPs. The book discusses both physical and chemical methods for creating these nanoparticles, as well as their surface chemistry. It further delves into the therapeutic applications of MNPs, such as hyperthermia therapy and drug delivery, and their potential in disease diagnosis using magnetic resonance biosensors. Intended for researchers and practitioners in nanomedicine and related fields, it provides a comprehensive overview of current techniques, challenges, and future directions in the application of MNPs for medical purposes.
    Anmerkung: Front Cover -- Magnetic Nanoparticles in Nanomedicine -- Copyright Page -- Contents -- List of contributors -- Foreword -- Preface -- I. Introduction to magnetic materials and magnetic nanoparticles (MNPs) -- 1 Basics of magnetic materials and magnetism -- 1.1 Introduction to magnetic materials -- 1.2 Different types of magnetism and hysteresis loops -- 1.2.1 Magnetism -- 1.2.2 Hysteresis loops -- 1.3 Units and measurement -- 1.4 Magnetic anisotropy -- 1.4.1 Magnetocrystalline anisotropy -- 1.4.2 Stress anisotropy -- 1.4.3 Shape anisotropy -- 1.4.4 Induced magnetic anisotropy -- 1.4.5 Exchange coupling and exchange anisotropy -- 1.5 Magnetostriction and stress anisotropy -- 1.5.1 Effect of applied stress -- 1.5.2 Measuring magnetostriction -- 1.6 Exchange in magnetic systems -- 1.6.1 Ferromagnetic-antiferromagnetic coupling -- 1.6.2 Ferromagnet-ferromagnet coupling -- 1.6.3 Ruderman, Kittel, Kasuya, Yosida coupling -- 1.7 Magnetic domains -- 1.7.1 Bloch and Néel walls -- 1.7.2 Domain wall thickness -- 1.7.3 Domain wall: inclusions and microstress -- 1.7.4 Single domain particles and superparamagnetism -- 1.8 Magnetization process and magnetization dynamics -- 1.8.1 Eddy currents -- 1.8.2 Domain wall movement and velocity -- 1.8.3 Permeability loss and thermal fluctuation -- 1.8.4 Damping -- 1.8.4.1 Intrinsic damping -- 1.8.4.2 Extrinsic damping -- 1.9 Conclusions and perspectives -- Acknowledgments -- Conflict of interest -- References -- II. Micromagnetic simulation -- 2 Micromagnetic simulation tools: OOMMF, Mumax3, and COMSOL Multiphysics -- 2.1 Introduction -- 2.2 Theoretical background of micromagnetic simulation -- 2.2.1 Landau-Lifshitz-Gilbert equation -- 2.2.2 Energies and effective fields -- 2.2.2.1 Zeeman energy -- 2.2.2.2 Heisenberg exchange interaction -- 2.2.2.3 Magnetocrystalline anisotropy. , 2.2.2.4 Dipole-dipole interaction and demagnetization -- 2.2.2.5 Dzyaloshinskii-Moriya interaction -- 2.2.2.6 Finite temperature field -- 2.2.2.7 Spin-transfer torque -- 2.3 Numerical tools for micromagnetic simulation -- 2.3.1 Finite difference method and finite element method -- 2.3.2 Typical micromagnetic simulation tools -- 2.4 Micromagnetic simulation with object-oriented micromagnetic framework -- 2.4.1 A first glance at object-oriented micromagnetic framework -- 2.4.2 Oxs extensions -- 2.5 Micromagnetic simulation of magnetic nanoparticles with Mumax3 -- 2.5.1 A first glance at Mumax3 -- 2.5.2 Spin canting effect -- 2.5.3 Different phases of magnetic nanoparticle domains -- 2.5.4 Hysteresis loops -- 2.5.5 Relaxivity -- 2.5.6 AC response and magnetic susceptibility -- 2.6 Micromagnetic simulation with COMSOL Multiphysics -- 2.6.1 A first glance at the Micromagnetics Module for COMSOL Multiphysics -- 2.6.2 Magnetic dipolar field -- 2.6.3 Adiabatic heating -- 2.6.4 Magnetic susceptibility calculated in frequency domain -- 2.6.5 Frequency splitting and shifting of coupled magnetic nanoparticles -- 2.7 Conclusion -- Acknowledgments -- References -- III. MNPs: synthesis, functionalization, and characterization -- 3 Physical methods for the synthesis of MNPs -- 3.1 Introduction -- 3.2 Ball milling method -- 3.2.1 Dry milling -- 3.2.2 Wet milling -- 3.3 Lithography method -- 3.3.1 Optical lithography -- 3.3.1.1 Particles with a single magnetic layer -- 3.3.1.2 Particles with multiple magnetic layers -- 3.3.2 Nanoimprinting lithography -- 3.4 Gas-phase condensation method -- 3.4.1 Sputtering-based gas-phase condensation method -- 3.4.2 Supering targets utilization rates improvement -- 3.4.3 Full-face erosion technique -- 3.4.4 Hollow cathode technique -- 3.4.5 Core@shell magnetic nanoparticles -- 3.4.5.1 Synthesis from An alloy target. , 3.4.5.2 In-line deposition -- 3.4.5.3 Multiple ion cluster sources -- 3.5 Conclusion and perspectives -- Acknowledgments -- References -- 4 Chemical and biological methods for the synthesis of magnetic nanoparticles -- 4.1 Introduction -- 4.2 Chemical methods -- 4.2.1 Co-precipitation -- 4.2.2 Thermal decomposition -- 4.2.3 Microemulsion -- 4.2.4 Hydrothermal -- 4.2.5 Sol-gel -- 4.2.6 Polyol -- 4.2.7 Sonochemical -- 4.3 Biological methods -- 4.4 Comparison of synthesis methods -- 4.5 Conclusions -- Acknowledgments -- References -- 5 Surface chemical functionalization of magnetic nanoparticles -- 5.1 Introduction -- 5.2 Techniques to increase colloidal stabilities -- 5.3 Surface functionalization for facile conjugations -- 5.4 Biomimetic membrane coated magnetic nanoparticles -- 5.4.1 Cell-membrane-coated magnetic nanoparticles -- 5.4.2 Magnetic nanoparticle-loaded exosomes -- 5.5 Conclusion and perspectives -- Acknowledgment -- References -- 6 Characterization methods for magnetic nanoparticles -- 6.1 Introduction -- 6.2 Transmission electron microscopy -- 6.3 Vibrating sample magnetometry -- 6.4 Superconducting quantum interference device magnetometry -- 6.5 X-ray diffraction -- 6.6 Dynamic light scattering -- 6.7 Mössbauer spectroscopy -- 6.8 Magnetic force microscopy and atomic force microscopy -- 6.9 Fourier transform infrared spectroscopy -- 6.10 Conclusion -- Acknowledgments -- References -- IV. MNPs for therapy -- 7 Self-regulating magnetic nanoparticles for hyperthermia therapy -- 7.1 Introduction -- 7.2 Ball-milling methods for synthesis of Gd-based magnetic nanoparticles -- 7.2.1 Motivation -- 7.2.2 Experiment -- 7.2.3 Results -- 7.3 Particle size-dependent magnetization of Gd-based nanoparticles -- 7.3.1 Introduction -- 7.3.2 Experiment -- 7.3.3 Conclusions -- 7.4 Self-regulating hyperthermia. , 7.4.1 Introduction to self-regulating hyperthermia -- 7.4.2 Biocompatibility of gadolinium silicide particles -- 7.4.3 Polydisperse gadolinium silicide particles for self-regulating hyperthermia -- 7.4.3.1 Experiment -- 7.4.3.2 Specific loss power -- 7.4.3.3 Self-regulation of hyperthermia -- 7.4.3.4 Discussion -- 7.4.4 Particle size dependence of gadolinium silicide particles for self-regulating hyperthermia -- 7.4.4.1 Experiment -- 7.4.4.2 Results -- 7.4.4.3 Discussion -- 7.5 Conclusion -- Acknowledgments -- Declaration -- References -- 8 Magnetic nanoparticles for drug/gene delivery -- 8.1 Introduction -- 8.2 Physicochemical properties of magnetic nanoparticles for drug delivery -- 8.2.1 Magnetic properties -- 8.2.2 Hydrodynamic size and geometry -- 8.2.3 Stability and biocompatibility -- 8.3 Design principles -- 8.3.1 Poly(ethylene glycol) -- 8.3.2 Dextran -- 8.3.3 Chitosan -- 8.3.4 Polyethyleneimine -- 8.3.5 Liposomes -- 8.3.6 Copolymers -- 8.3.7 Biogenic cell membranes -- 8.3.8 Silica and silane coupling agents -- 8.4 Delivery vehicles -- 8.4.1 Chemotherapeutic agents -- 8.4.2 Radionuclides -- 8.4.3 Antibodies and peptides -- 8.4.4 Gene -- 8.5 Controlled release -- 8.5.1 Internal stimuli -- 8.5.1.1 pH-responsive -- 8.5.1.2 Enzymes responsive -- 8.5.1.3 Redox responsive -- 8.5.2 External stimuli -- 8.5.2.1 Magnetic fields -- 8.5.2.2 Light -- 8.6 Conclusion and perspectives -- Acknowledgments -- References -- 9 Magnetic nanoparticles for neurostimulation -- 9.1 Introduction -- 9.2 Basics of neuromodulation -- 9.2.1 The neuron and the stimulus -- 9.2.2 The action potential and associated molecular phenomena -- 9.2.3 Sensitive ion channels -- 9.2.4 Transport and dynamics of magnetic nanoparticles in overcoming the blood-brain barrier -- 9.2.5 Recording neuron responses -- 9.3 Magnetothermal neuromodulation -- 9.4 Magnetomechanical neuromodulation. , 9.5 Magnetoelectrical neuromodulation -- 9.6 Chemomagnetic neuromodulation -- 9.7 Magnetogenetic veuromodulation -- 9.8 Challenges for magnetic nanoparticles in neurostimulation -- 9.9 Conclusions and outlook -- Acknowledgments -- References -- V. MNPs for in vitro disease diagnosis -- 10 Magnetoresistive (MR) biosensor -- 10.1 Introduction -- 10.2 Giant magnetoresistance and GMR biosensors -- 10.2.1 Giant magnetoresistance effect -- 10.2.2 Giant magnetoresistance effect in different structures -- 10.2.3 Giant magnetoresistance biosensors -- 10.3 Tunneling magnetoresistance and TMR biosensors -- 10.3.1 Tunnel magnetoresistance effect -- 10.3.2 Magnetic tunnel junction sensors -- 10.4 Detection mechanisms in magnetoresistive biosensors -- 10.4.1 Sensing the magnetic nanoparticle -- 10.4.2 Building up the bioassay -- 10.4.3 Choosing the right label -- 10.5 Applications of magnetoresistive biosensor in biological detection -- 10.5.1 Giant magnetoresistance biosensors for protein biomarker detection -- 10.5.2 Giant magnetoresistance biosensors for DNA detection and genotyping -- 10.5.3 Applications of magnetic tunnel junction biosensors -- 10.6 Emerging trends and future directions of MR biosensors -- 10.6.1 Point-of-care testing -- 10.6.2 Flexible biosensors -- 10.7 Conclusions -- Acknowledgment -- Conflict of interest -- References -- 11 Magnetic particle spectroscopy (MPS) biosensor -- 11.1 Introduction -- 11.2 Principles of magnetic particle spectroscopy -- 11.2.1 Magnetic nanoparticle relaxation dynamics -- 11.2.2 Modeling magnetization response-Langevin and Debye models -- 11.2.3 Magnetic particle spectroscopy applications -- 11.3 Magnetic particle spectroscopy platform classifications -- 11.3.1 Mixed frequency versus single frequency -- 11.3.2 Surface versus volumetric magnetic particle spectroscopy bioassays. , 11.3.3 Magnetic particle spectroscopy-based point-of-care systems.
    Weitere Ausg.: ISBN 9780443216688
    Weitere Ausg.: ISBN 0443216681
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780443216169?
Meinten Sie 9780443216459?
Meinten Sie 9780443216497?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz