UID:
almahu_9950008611702882
Umfang:
1 online resource (626 pages)
Ausgabe:
1st ed.
ISBN:
9780443337079
Anmerkung:
Front Cover -- Innovative Creep Analysis Methods: 101 Solved Problems -- Copyright Page -- Contents -- Preface -- List of main symbols -- Main abbreviations -- 1 General information for creep analysis methods -- 1.1 Introduction -- 1.1.1 Definition -- 1.1.2 Some important questions -- 1.2 Introduction to application of artificial intelligence in mechanical and material engineering for creep analyzing -- 1.3 The future picture of creep analysis -- 1.4 Artificial Intelligence example for detecting the types of creep fracture -- 1.5 Introduction to two common and general formulations in creep -- References -- 2 Analytical creep analysis methods -- 2.1 Introduction -- 2.1.1 Behavior of fiber and matrix in a composite and shear-lag model -- 2.1.2 Creep stress analysis in fibrous composites by modifying Cox model -- 2.1.3 Creep analysis of fibrous composites using advanced shear-lag method -- 2.1.4 Generalization of McLean's uniaxial creep model -- 2.1.5 Modeling of creep in fibrous cementitious composite -- 2.1.6 Shear-lag model for carbon nanotube-reinforced polymer composites -- 2.1.7 Creep analysis in short fiber composites by polynomial functions -- 2.1.8 Creep analysis of composites by special functions -- 2.1.9 Imaginary fiber technique for stress transfer in fibrous composites -- 2.1.10 Stress transfer in a fibrous composite -- 2.1.11 Micromechanical modeling of load transfer in fibrous composites -- 2.1.12 Creep in composite under axial load and thermal residual stress -- 2.1.13 Obtaining Young's modulus of composite by modified shear-lag model -- 2.1.14 Nonlinear creep modeling of single-fiber model composites -- 2.1.15 Creep response in fibrous ceramic composites -- 2.1.16 Variational method for creep analysis in composites -- 2.1.17 Creep analysis by mapping and dimensionless parameter techniques.
,
2.1.18 Creep of polymer matrix composites using complex variable method -- 2.1.19 Mathematical approach for analyzing the creep in composites -- References -- 3 Numerical creep analysis methods -- 3.1 Introduction -- 3.1.1 Effects of geometric factors on creep of fibrous composites -- 3.1.2 Residual stress formation in Al/SiC composites -- 3.1.3 Elastoplastic finite element analysis for SiC/Al composites -- 3.1.4 Creep of fibrous ceramic composites by finite element analysis -- 3.1.5 Micromechanics effects in creep of metal-matrix composites -- 3.1.6 Statistic modeling of the creep behavior of metal matrix composite by finite element model -- 3.1.7 Simulating the late phase of core melt down scenarios in a reactor pressure vessel -- 3.1.8 Finite element model analysis of transverse creep in honeycomb structures -- 3.1.9 Quasishear-lag model -- References -- 4 Experimental creep analysis methods -- 4.1 Introduction -- 4.1.1 Creep rupture of a SiC/Al composite -- 4.1.2 Creep of SiC/Al6061 composite -- 4.1.3 Creep behavior of TiC-particulate-reinforced Ti alloy composite -- 4.1.4 Threshold creep behavior of the composites -- 4.1.5 Effect of second phase on the creep deformation -- 4.1.6 Indentation creep in a metal matrix composite -- 4.1.7 Creep behavior of Ti-V-Cr burn resistant alloys -- 4.1.8 Effects of temperature on the creep parameters of the composite material -- 4.1.9 Indentation creep of the alloys -- 4.1.10 Compression creep of a metal matrix composite -- 4.1.11 Creep in vacuum of the woven composites -- 4.1.12 Creep of replicated microcellular aluminum -- 4.1.13 Durability life evaluation of turbine blade using low cycle fatigue -- 4.1.14 Creep-mediated functionality in polycrystalline barium titanate -- 4.1.15 Creep characteristics and constitutive model of coal -- 4.2 Combinatorial and different research works -- 4.2.1 Viscoelastic model.
,
4.2.2 Creep damage assessment method -- 4.2.3 Creep fatigue behavior of a superalloy -- 4.2.4 Future directions in creep analysis -- 4.2.5 Creep and plasticity: a short overview -- 4.2.5.1 General comparison -- 4.2.5.2 Detailed comparison -- 4.2.5.2.1 Understand the mechanisms -- 4.2.5.2.2 Microstructural engineering -- 4.2.5.2.3 Constitutive modeling -- 4.2.5.2.4 Experimental characterization -- 4.2.5.2.5 Simulation and predictive tools -- 4.2.6 Creep of some important materials: brief overview -- 4.2.6.1 Metals -- 4.2.6.1.1 Nickel-based superalloys -- 4.2.6.1.2 Titanium alloys -- 4.2.6.2 Ceramics -- 4.2.6.2.1 Silicon nitride -- 4.2.6.2.2 Zirconia -- 4.2.6.3 Polymers -- 4.2.6.3.1 High-temperature polymers (e.g., polyimides) -- 4.2.6.3.2 Fluoropolymers (e.g., polytetrafluoroethylene, fluorinated ethylene propylene) -- 4.2.6.4 Composites -- 4.2.6.4.1 Carbon fiber-reinforced polymers -- 4.2.6.4.2 Glass fiber-reinforced polymer -- References -- 5 Comprehensive algorithm for analyzing the elasticity and plasticity problems -- 5.1 Introduction to engineering problems -- 5.2 General model for analyzing elasticity and plasticity problems -- 5.3 Calculation of displacement and strain rates -- 5.4 Comprehensive algorithm for analyzing plasticity problems -- 5.5 Presenting an applied example by the mentioned algorithm -- 5.6 Proposed solution to analyze functionally graded materials problem generally -- 5.7 Displacement based analytical method -- 5.8 Possible challenge -- References -- 6 Effects of Atomic Number and Atomic Weight on Creep -- 6.1 Definition of Atomic Number and Atomic Weight -- 6.2 Introduction to Atomic Properties for Creep Analyzing -- 6.3 Predicting the Creep Strain Rate by Atomic Properties Semi-Analytically -- 6.4 Creep Strain Rates of Ag, Ni, and Al -- 6.5 Neural Network Simulation for Creep Analyzing.
,
6.6 Summary and Conclusion of Creep in Ag, Ni and Al -- References -- 7 Simulation of elasto-plastic deformation in composite by flow rules -- 7.1 Analogy between creep in solids and fluid flow in fluid mechanics -- 7.2 Introduction to simulation between creep and viscosity -- 7.3 Simulation of the creeping matrix -- 7.4 Boundary conditions for creep problem -- 7.5 Formulation for simulation of viscosity -- 7.6 Outcome of the viscosity analogy with creeping polyester resin matrix -- 7.7 Brief conclusion for the simulation of creep and viscosity -- 7.8 Practical applications -- References -- 8 Obtaining the viscosity of solids using creep semitheoretically -- 8.1 Meaningful relationship between creep and viscosity -- 8.2 Review on creep and viscosity in available research works -- 8.3 Calculation of viscosity using creeping matrix -- 8.4 Case study for obtaining viscosity -- 8.5 Summary and conclusion for the analogy creep-viscosity -- References -- 9 Creep formulations and diagrams -- 9.1 Introduction to creep computations -- 9.2 Definition of the problem -- 9.2.1 Composite model presentation -- 9.2.2 Required equations for solving the creep problem -- 9.2.3 Boundary conditions for creeping unit cell -- 9.3 Materials and methods for creep analysis -- 9.3.1 Problem solution steps -- 9.3.2 Required theory and formulation for starting the creep analysis -- 9.3.2.1 Obtaining displacement rates -- 9.3.2.2 Obtaining stress field behaviors -- 9.3.2.3 Obtaining displacement and strain rates by direct solution method -- 9.4 Analytical and finite element method results -- 9.4.1 Comparison of composite creep strain rates -- 9.4.2 Verification of the stress behaviors in the nonreinforced region II -- 9.5 Validation and comparison of the results for creep strain rate -- References -- 10 Application of legendre polynomials in creep analysis of composites.
,
10.1 Brief history and definition of legendre polynomials -- 10.2 Short introduction to creep analysis through special functions -- 10.3 Material and method for creep analysis via legendre polynomials -- 10.3.1 Composite model presentation -- 10.3.2 Applied suitable boundary conditions -- 10.3.3 Formulation -- 10.4 Presentation of the results -- 10.4.1 Comparing the results of present analytical and experimental methods -- 10.4.2 Validation and prediction of the hydrostatic stress behavior -- 10.4.3 Changes of stresses at the fiber end -- 10.5 Conclusions of creep hydrostatic stress analysis using legendre polynomials -- References -- 11 Computational modeling of creep in complex plane for composites -- 11.1 Concise history and definition of complex analysis -- 11.2 Short review on available scientific resources about complex variables -- 11.3 Defining the plane stress state for creeping unit cell -- 11.3.1 General explanation about the creeping model -- 11.3.2 Solution part 1: constant € -- 11.3.3 Solution part 2: variable € -- 11.4 Creep analysis of the results obtained from complex variable method -- 11.4.1 Analyzing the behavior of longitudinal displacement rate -- 11.4.2 Analyzing the behavior of transverse displacement rate -- 11.5 Summary and conclusion of complex variable method for creep analysis of composites -- 11.6 Review of method and formulation for creep analysis -- 11.6.1 Summary -- 11.6.2 Equilibrium equations -- 11.6.3 Generalized creep constitutive equations -- 11.6.4 Compatibility equations in the cylindrical coordinate -- 11.6.5 Incompressibility condition -- 11.6.6 Creep strain-displacement rate relations (geometric relations) -- 11.6.7 Energy formulation -- 11.6.8 Shear lag theory -- 11.6.9 Relation of the equivalent stress and strain rate -- 11.6.10 General well-behaved displacement rate functions.
,
11.6.11 Creep in a rotating disk.
Weitere Ausg.:
Print version: Monfared, Vahid Innovative Creep Analysis Methods Chantilly : Elsevier,c2025 ISBN 9780443337062
Sprache:
Englisch
Bookmarklink