Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge ; : Cambridge University Press,
    UID:
    almafu_9959240407502883
    Umfang: 1 online resource (xix, 216 pages) : , digital, PDF file(s).
    Ausgabe: 1st ed.
    ISBN: 1-107-12735-1 , 1-280-41870-2 , 9786610418701 , 0-511-17762-3 , 0-511-03983-2 , 0-511-14803-8 , 0-511-30513-3 , 0-511-54318-2 , 0-511-05400-9
    Serie: Cambridge tracts in mathematics ; 139
    Inhalt: This 2000 book provides a self-contained introduction to typical properties of homeomorphisms. Examples of properties of homeomorphisms considered include transitivity, chaos and ergodicity. A key idea here is the interrelation between typical properties of volume preserving homeomorphisms and typical properties of volume preserving bijections of the underlying measure space. The authors make the first part of this book very concrete by considering volume preserving homeomorphisms of the unit n-dimensional cube, and they go on to prove fixed point theorems (Conley-Zehnder- Franks). This is done in a number of short self-contained chapters which would be suitable for an undergraduate analysis seminar or a graduate lecture course. Much of this work describes the work of the two authors, over the last twenty years, in extending to different settings and properties, the celebrated result of Oxtoby and Ulam that for volume homeomorphisms of the unit cube, ergodicity is a typical property.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Volume preserving homeomorphisms of the cube -- , Introduction to part I and II (compact manifolds) -- , Measure preserving homeomorphisms -- , Discrete approximations -- , Transitive homeomorphisms of In and Rn -- , Fixed points and area preservation -- , Measure preserving lusin theorem -- , Ergodic homeomorphisms -- , Uniform approximation in g[In, delta] and generic properties in M[In, delta] -- , Measure preserving homeomorphisms of a compact manifold -- , Measures on compact manifolds -- , Dynamics on compact manifolds -- , Oeasure preserving homeomorphisms of a noncompact manifold -- , Ergodic volume preserving homeomorphisms of Rn -- , Manifolds where ergodicity is not generic -- , Noncompact manifolds and ends -- , Ergodic homeomorphisms: the results -- , Ergodic homeomorphisms: proofs -- , Other properties typical in M[X, u]. , English
    Weitere Ausg.: ISBN 0-521-17243-8
    Weitere Ausg.: ISBN 0-521-58287-3
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge : Cambridge University Press
    UID:
    gbv_883375710
    Umfang: 1 Online-Ressource (xix, 216 pages) , digital, PDF file(s).
    ISBN: 9780511543180
    Serie: Cambridge tracts in mathematics 139
    Inhalt: This 2000 book provides a self-contained introduction to typical properties of homeomorphisms. Examples of properties of homeomorphisms considered include transitivity, chaos and ergodicity. A key idea here is the interrelation between typical properties of volume preserving homeomorphisms and typical properties of volume preserving bijections of the underlying measure space. The authors make the first part of this book very concrete by considering volume preserving homeomorphisms of the unit n-dimensional cube, and they go on to prove fixed point theorems (Conley–Zehnder– Franks). This is done in a number of short self-contained chapters which would be suitable for an undergraduate analysis seminar or a graduate lecture course. Much of this work describes the work of the two authors, over the last twenty years, in extending to different settings and properties, the celebrated result of Oxtoby and Ulam that for volume homeomorphisms of the unit cube, ergodicity is a typical property.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015) , Volume preserving homeomorphisms of the cube -- Introduction to part I and II (compact manifolds) -- Measure preserving homeomorphisms -- Discrete approximations -- Transitive homeomorphisms of In and Rn -- Fixed points and area preservation -- Measure preserving lusin theorem -- Ergodic homeomorphisms -- Uniform approximation in g[In, delta] and generic properties in M[In, delta] -- Measure preserving homeomorphisms of a compact manifold -- Measures on compact manifolds -- Dynamics on compact manifolds -- Oeasure preserving homeomorphisms of a noncompact manifold -- Ergodic volume preserving homeomorphisms of Rn -- Manifolds where ergodicity is not generic -- Noncompact manifolds and ends -- Ergodic homeomorphisms: the results -- Ergodic homeomorphisms: proofs -- Other properties typical in M[X, u].
    Weitere Ausg.: ISBN 9780521172431
    Weitere Ausg.: ISBN 9780521582872
    Weitere Ausg.: ISBN 9780521582872
    Weitere Ausg.: ISBN 9780521172431
    Weitere Ausg.: Erscheint auch als Alpern, Steve, 1948 - Typical dynamics of volume preserving homeomorphisms Cambridge [u.a.] : Cambridge University Press, 2000 ISBN 0521582873
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780521582872
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    Schlagwort(e): Topologische Dynamik ; Homöomorphismus
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almahu_9948234006902882
    Umfang: 1 online resource (xix, 216 pages) : , digital, PDF file(s).
    ISBN: 9780511543180 (ebook)
    Serie: Cambridge tracts in mathematics ; 139
    Inhalt: This 2000 book provides a self-contained introduction to typical properties of homeomorphisms. Examples of properties of homeomorphisms considered include transitivity, chaos and ergodicity. A key idea here is the interrelation between typical properties of volume preserving homeomorphisms and typical properties of volume preserving bijections of the underlying measure space. The authors make the first part of this book very concrete by considering volume preserving homeomorphisms of the unit n-dimensional cube, and they go on to prove fixed point theorems (Conley-Zehnder- Franks). This is done in a number of short self-contained chapters which would be suitable for an undergraduate analysis seminar or a graduate lecture course. Much of this work describes the work of the two authors, over the last twenty years, in extending to different settings and properties, the celebrated result of Oxtoby and Ulam that for volume homeomorphisms of the unit cube, ergodicity is a typical property.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Volume preserving homeomorphisms of the cube -- , Introduction to part I and II (compact manifolds) -- , Measure preserving homeomorphisms -- , Discrete approximations -- , Transitive homeomorphisms of In and Rn -- , Fixed points and area preservation -- , Measure preserving lusin theorem -- , Ergodic homeomorphisms -- , Uniform approximation in g[In, delta] and generic properties in M[In, delta] -- , Measure preserving homeomorphisms of a compact manifold -- , Measures on compact manifolds -- , Dynamics on compact manifolds -- , Oeasure preserving homeomorphisms of a noncompact manifold -- , Ergodic volume preserving homeomorphisms of Rn -- , Manifolds where ergodicity is not generic -- , Noncompact manifolds and ends -- , Ergodic homeomorphisms: the results -- , Ergodic homeomorphisms: proofs -- , Other properties typical in M[X, u].
    Weitere Ausg.: Print version: ISBN 9780521582872
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780511541360?
Meinten Sie 9780511541100?
Meinten Sie 9780511541186?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz