Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge : Cambridge University Press
    UID:
    b3kat_BV043944088
    Umfang: 1 online resource (xii, 394 Seiten)
    ISBN: 9780511546921
    Inhalt: This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015)
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 978-0-521-84108-5
    Weitere Ausg.: Erscheint auch als Druckausgabe ISBN 978-0-521-84108-5
    Sprache: Englisch
    Fachgebiete: Informatik , Wirtschaftswissenschaften , Mathematik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Spieltheorie ; Vorhersagetheorie ; Maschinelles Lernen
    URL: Volltext  (URL des Erstveröffentlichers)
    Mehr zum Autor: Lugosi, Gábor 1964-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almahu_9948234070902882
    Umfang: 1 online resource (xii, 394 pages) : , digital, PDF file(s).
    ISBN: 9780511546921 (ebook)
    Inhalt: This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
    Weitere Ausg.: Print version: ISBN 9780521841085
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge ; : Cambridge University Press,
    UID:
    almafu_9959243206402883
    Umfang: 1 online resource (xii, 394 pages) : , digital, PDF file(s).
    ISBN: 1-107-16295-5 , 1-280-45835-6 , 9786610458356 , 0-511-19131-6 , 0-511-19059-X , 0-511-19178-2 , 0-511-31602-X , 0-511-54692-0 , 0-511-19091-3
    Inhalt: This important text and reference for researchers and students in machine learning, game theory, statistics and information theory offers a comprehensive treatment of the problem of predicting individual sequences. Unlike standard statistical approaches to forecasting, prediction of individual sequences does not impose any probabilistic assumption on the data-generating mechanism. Yet, prediction algorithms can be constructed that work well for all possible sequences, in the sense that their performance is always nearly as good as the best forecasting strategy in a given reference class. The central theme is the model of prediction using expert advice, a general framework within which many related problems can be cast and discussed. Repeated game playing, adaptive data compression, sequential investment in the stock market, sequential pattern analysis, and several other problems are viewed as instances of the experts' framework and analyzed from a common nonstochastic standpoint that often reveals new and intriguing connections.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Cover; Half-title; Title; Copyright; Dedication; Contents; Preface; 1 Introduction; 2 Prediction with Expert Advice; 3 Tight Bounds for Specific Losses; 4 Randomized Prediction; 5 Efficient Forecasters for Large Classes of Experts; 6 Prediction with Limited Feedback; 7 Prediction and Playing Games; 8 Absolute Loss; 9 Logarithmic Loss; 10 Sequential Investment; 11 Linear Pattern Recognition; 12 Linear Classification; Appendix; References; Author Index; Subject Index , English
    Weitere Ausg.: ISBN 0-521-84108-9
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780511542923?
Meinten Sie 9780511096921?
Meinten Sie 9780511536021?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz