Umfang:
1 Online-Ressource (ix, 267 pages)
,
digital, PDF file(s).
ISBN:
9780511550256
Serie:
London Mathematical Society lecture note series 301
Inhalt:
This 2003 book is concerned with two fundamental problems in low-dimensional topology. Firstly, the D(2)-problem, which asks whether cohomology detects dimension, and secondly the realization problem, which asks whether every algebraic 2-complex is geometrically realizable. The author shows that for a large class of fundamental groups these problems are equivalent. Moreover, in the case of finite groups, Professor Johnson develops general methods and gives complete solutions in a number of cases. In particular, he presents a complete treatment of Yoneda extension theory from the viewpoint of derived objects and proves that for groups of period four, two-dimensional homotopy types are parametrized by isomorphism classes of projective modules. This book is carefully written with an eye on the wider context and as such is suitable for graduate students wanting to learn low-dimensional homotopy theory as well as established researchers in the field.
Inhalt:
1. Orders in semisimple algebras -- 2. Representation of finite groups -- 3. Stable modules and cancellation theorems -- 4. Relative homological algebra -- 5. The derived category of a finite group -- 6. k-invariants -- 7. Groups of periodic cohomology -- 8. Algebraic homotopy theory -- 9. Stability theorems -- 10. The D(2)-problem -- 11. Poincare -- 3 complexes
Anmerkung:
Title from publisher's bibliographic system (viewed on 05 Oct 2015)
Weitere Ausg.:
ISBN 9780521537490
Weitere Ausg.:
ISBN 9780521537490
Weitere Ausg.:
ISBN 9780521537490
Weitere Ausg.:
Erscheint auch als Johnson, F. E. A., 1946 - Stable modules and the D(2)-problem Cambridge [u.a.] : Cambridge University Press, 2003 ISBN 0521537495
Weitere Ausg.:
Erscheint auch als Druck-Ausgabe ISBN 9780521537490
Sprache:
Englisch
Fachgebiete:
Mathematik
Schlagwort(e):
Homotopietheorie
;
Homologische Algebra
;
Niederdimensionale Topologie
;
Niederdimensionale Topologie
;
Homotopietheorie
;
Gruppenring
DOI:
10.1017/CBO9780511550256
Bookmarklink