Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    gbv_883325632
    Umfang: 1 Online-Ressource (viii, 236 pages) , digital, PDF file(s)
    ISBN: 9780511611131
    Serie: Cambridge series on statistical and probabilistic mathematics 23
    Inhalt: In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015)
    Weitere Ausg.: ISBN 9780521847032
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780521847032
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almahu_9948233696002882
    Umfang: 1 online resource (viii, 236 pages) : , digital, PDF file(s).
    ISBN: 9780511611131 (ebook)
    Serie: Cambridge series on statistical and probabilistic mathematics ; 23
    Inhalt: In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
    Weitere Ausg.: Print version: ISBN 9780521847032
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9959241331402883
    Umfang: 1 online resource (viii, 236 pages) : , digital, PDF file(s).
    ISBN: 1-107-17561-5 , 1-280-90989-7 , 9786610909896 , 0-511-28598-1 , 0-511-28440-3 , 0-511-28670-8 , 0-511-32222-4 , 0-511-61113-7 , 0-511-28522-1
    Serie: Cambridge series in statistical and probabilistic mathematics
    Inhalt: In fields such as biology, medical sciences, sociology, and economics researchers often face the situation where the number of available observations, or the amount of available information, is sufficiently small that approximations based on the normal distribution may be unreliable. Theoretical work over the last quarter-century has led to new likelihood-based methods that lead to very accurate approximations in finite samples, but this work has had limited impact on statistical practice. This book illustrates by means of realistic examples and case studies how to use the new theory, and investigates how and when it makes a difference to the resulting inference. The treatment is oriented towards practice and comes with code in the R language (available from the web) which enables the methods to be applied in a range of situations of interest to practitioners. The analysis includes some comparisons of higher order likelihood inference with bootstrap or Bayesian methods.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Cover; Half-title; Series-title; Title; Copyright; Contents; Preface; 1 Introduction; 2 Uncertainty and approximation; 3 Simple illustrations; 4 Discrete data; 5 Regression with continuous responses; 6 Some case studies; 7 Further topics; 8 Likelihood approximations; 9 Numerical implementation; 10 Problems and further results; Appendix A Some numerical techniques; References; Example index; Name index; Index , English
    Weitere Ausg.: ISBN 0-521-84703-6
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9780511610431?
Meinten Sie 9780511111341?
Meinten Sie 9780511511431?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz