Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
Access
  • 1
    Online Resource
    Online Resource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9960119736002883
    Format: 1 online resource (xv, 232 pages) : , digital, PDF file(s).
    ISBN: 0-511-83327-X , 0-511-47089-4
    Series Statement: Cambridge tracts in mathematics ; 112
    Content: The Schur algebra is an algebraic system providing a link between the representation theory of the symmetric and general linear groups (both finite and infinite). In the text Dr Martin gives a full, self-contained account of this algebra and these links, covering both the basic theory of Schur algebras and related areas. He discusses the usual representation-theoretic topics such as constructions of irreducible modules, the blocks containing them, their modular characters and the problem of computing decomposition numbers; moreover deeper properties such as the quasi-hereditariness of the Schur algebra are discussed. The opportunity is taken to give an account of quantum versions of Schur algebras and their relations with certain q-deformations of the coordinate rings of the general linear group. The approach is combinatorial where possible, making the presentation accessible to graduate students. This is the first comprehensive text in this important and active area of research; it will be of interest to all research workers in representation theory.
    Note: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , 1. Polynomial functions and combinatorics. 1.1. Introductory remarks. 1.2. Schur's thesis. 1.3. The polynomial algebra. 1.4. Combinatorics. 1.5. Character theory and weight spaces. 1.6. Irreducible objects in P[subscript K](n, r) -- 2. The Schur algebra. 2.1. Definition. 2.2. First properties. 2.3. The Schur algebra S[subscript K](n, r). 2.4. Bideterminants and codeterminants. 2.5. The Straightening Formula. 2.6. The Desarmenien matrix and independence -- 3. Representation theory of the Schur algebra. 3.1. Modules for [Alpha subscript r] and S[subscript r]. 3.2. Schur modules as induced modules. 3.3. Heredity chains. 3.4. Schur modules and Weyl modules. 3.5. Modular representation theory for Schur algebras -- 4. Schur functors and the symmetric group. 4.1. The Schur functor. 4.2. Applying the Schur functor. 4.3. Hom functors for quasi-hereditary algebras. 4.4. Decomposition numbers for G and [Gamma]. 4.5. [Delta]-[actual symbol not reproducible]-good filtrations. 4.6. Young modules -- 5. Block theory. , 5.1. Summary of block theory. 5.2. Return of the Hom functors. 5.3. Primitive blocks. 5.4. General blocks. 5.5. The finiteness theorem. 5.6. Examples -- 6. The q-Schur algebra. 6.1. Quantum matrix space. 6.2. The q-Schur algebra, first visit. 6.3. Weights and polynomial modules. 6.4. Characters and irreducible [Alpha subscript q](n)-modules. 6.5. R-forms for q-Schur algebras. 6.6. The q-Schur algebra, second visit -- 7. Representation theory of S[subscript q](n, r). 7.1. q-Weyl modules. 7.2. The q-determinant in [Alpha subscript q](n, r). 7.3. A quantum GL[subscript n]. 7.4. The category P[subscript q](n, r). 7.5. P[subscript q](n, r) is a highest weight category. 7.6. Representations of GL[subscript n](q) and the q-Young modules. 7.7. Conclusion -- Appendix: a review of algebraic groups -- A.1 Linear algebraic groups: definitions -- A.2 Examples of linear algebraic groups -- A.3 The weight lattice -- A.4 Root systems -- A.5 Weyl groups -- A.6 The affine Weyl group. , A.7 Simple modules for reductive groups -- A.8 General linear group schemes. , English
    Additional Edition: ISBN 0-521-10046-1
    Additional Edition: ISBN 0-521-41591-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9780521010405?
Did you mean 9780521100366?
Did you mean 9780521000765?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages