Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    UID:
    b3kat_BV049629394
    Umfang: 1 Online-Ressource (xx, 285 Seiten)
    ISBN: 9781009410076
    Serie: Cambridge series in statistical and probabilistic mathematics 56
    Inhalt: An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe, Hardcover ISBN 978-1-009-41006-9
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Mehr zum Autor: Kneib, Thomas 1976-
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almafu_9961417111902883
    Umfang: 1 online resource (xx, 285 pages) : , digital, PDF file(s).
    Ausgabe: First edition.
    ISBN: 9781009410052 , 1009410059 , 9781009410076 , 1009410075
    Serie: Cambridge series in statistical and probabilistic mathematics ; 56
    Inhalt: An emerging field in statistics, distributional regression facilitates the modelling of the complete conditional distribution, rather than just the mean. This book introduces generalized additive models for location, scale and shape (GAMLSS) - one of the most important classes of distributional regression. Taking a broad perspective, the authors consider penalized likelihood inference, Bayesian inference, and boosting as potential ways of estimating models and illustrate their usage in complex applications. Written by the international team who developed GAMLSS, the text's focus on practical questions and problems sets it apart. Case studies demonstrate how researchers in statistics and other data-rich disciplines can use the model in their work, exploring examples ranging from fetal ultrasounds to social media performance metrics. The R code and data sets for the case studies are available on the book's companion website, allowing for replication and further study.
    Anmerkung: Title from publisher's bibliographic system (viewed on 22 Feb 2024). , Distributional regression models -- Distributions -- Additive model terms -- Inferential methods -- Penalized maximum likelihood inference -- Bayesian inference -- Statistical boosting for GAMLSS -- Fetal ultrasound -- Speech intelligibility testing -- Social media post performance -- Childhood undernutrition in India -- Socioeconomic determinants of federal election outcomes in Germany -- Variable selection for gene expression data.
    Weitere Ausg.: ISBN 9781009410069
    Weitere Ausg.: ISBN 1009410067
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781000710076?
Meinten Sie 9781009010078?
Meinten Sie 9781003410706?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz