Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Access
  • 1
    UID:
    gbv_883417871
    Format: 1 Online-Ressource (xii, 431 pages) , digital, PDF file(s)
    ISBN: 9780511736230
    Content: Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems
    Content: Machine generated contents note: Preface; Part I. 1D Problems: 1. Variational solution of the Schrödinger equation; 2. Solution of bound state problems using a grid; 3. Solution of the Schrödinger equation for scattering states; 4. Periodic potentials: band structure in 1D; 5. Solution of time-dependent problems in quantum mechanics; 6. Solution of Poisson's equation; Part II. 2D and 3D Systems: 7. 3D real space approach: from quantum dots to Bose-Einstein condensates; 8. Variational calculations in 2D: quantum dots; 9. Variational calculations in 3D: atoms and molecules; 10. Monte Carlo calculations; 11. Molecular dynamics simulations; 12. Tight binding approach to electronic structure calculations; 13. Plane wave density functional calculations; 14. Density functional calculations with atomic orbitals; 15. Real-space density functional calculations; 16. Time-dependent density functional calculations; 17. Scattering and transport in nanostructures; 18. Numerical linear algebra; Appendix: code descriptions; References; Index
    Note: Title from publisher's bibliographic system (viewed on 05 Oct 2015)
    Additional Edition: ISBN 9781107001701
    Additional Edition: Erscheint auch als Druck-Ausgabe ISBN 9781107001701
    Language: English
    URL: Volltext  (lizenzpflichtig)
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almahu_9948234076102882
    Format: 1 online resource (xii, 431 pages) : , digital, PDF file(s).
    ISBN: 9780511736230 (ebook)
    Content: Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems.
    Note: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Machine generated contents note: Preface; Part I. 1D Problems: 1. Variational solution of the Schrödinger equation; 2. Solution of bound state problems using a grid; 3. Solution of the Schrödinger equation for scattering states; 4. Periodic potentials: band structure in 1D; 5. Solution of time-dependent problems in quantum mechanics; 6. Solution of Poisson's equation; Part II. 2D and 3D Systems: 7. 3D real space approach: from quantum dots to Bose-Einstein condensates; 8. Variational calculations in 2D: quantum dots; 9. Variational calculations in 3D: atoms and molecules; 10. Monte Carlo calculations; 11. Molecular dynamics simulations; 12. Tight binding approach to electronic structure calculations; 13. Plane wave density functional calculations; 14. Density functional calculations with atomic orbitals; 15. Real-space density functional calculations; 16. Time-dependent density functional calculations; 17. Scattering and transport in nanostructures; 18. Numerical linear algebra; Appendix: code descriptions; References; Index.
    Additional Edition: Print version: ISBN 9781107001701
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    UID:
    edocfu_9959227371902883
    Format: 1 online resource (xii, 431 pages) : , digital, PDF file(s).
    ISBN: 1-107-22027-0 , 1-283-11134-9 , 9786613111340 , 1-139-07594-2 , 0-511-73623-1 , 1-139-07821-6 , 1-139-07020-7 , 1-139-08050-4 , 1-139-08277-9
    Content: "Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems"--
    Note: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Machine generated contents note: Preface; Part I. 1D Problems: 1. Variational solution of the Schrodinger equation; 2. Solution of bound state problems using a grid; 3. Solution of the Schrodinger equation for scattering states; 4. Periodic potentials: band structure in 1D; 5. Solution of time-dependent problems in quantum mechanics; 6. Solution of Poisson's equation; Part II. 2D and 3D Systems: 7. 3D real space approach: from quantum dots to Bose-Einstein condensates; 8. Variational calculations in 2D: quantum dots; 9. Variational calculations in 3D: atoms and molecules; 10. Monte Carlo calculations; 11. Molecular dynamics simulations; 12. Tight binding approach to electronic structure calculations; 13. Plane wave density functional calculations; 14. Density functional calculations with atomic orbitals; 15. Real-space density functional calculations; 16. Time-dependent density functional calculations; 17. Scattering and transport in nanostructures; 18. Numerical linear algebra; Appendix: code descriptions; References; Index. , English
    Additional Edition: ISBN 1-107-00170-6
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9781107000711?
Did you mean 9781107000704?
Did you mean 9781107001008?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages