Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
  • 1
    Buch
    Buch
    Cambridge :Cambridge University Press,
    UID:
    almahu_BV040138483
    Umfang: xviii, 580 Seiten : , Illustrationen, Diagramme.
    Ausgabe: First published
    ISBN: 978-1-107-01179-3
    Anmerkung: Hier auch später erschienene, unveränderte Nachdrucke
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    RVK:
    Schlagwort(e): Maschinelles Sehen ; Maschinelles Sehen ; Maschinelles Lernen ; Statistisches Modell
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9961294054502883
    Umfang: 1 online resource (xviii, 580 pages) : , digital, PDF file(s).
    Ausgabe: 1st ed.
    ISBN: 1-139-50630-7 , 1-280-77512-2 , 9786613685513 , 1-139-51763-5 , 1-139-51505-5 , 0-511-99650-0 , 1-139-51670-1 , 1-139-51856-9
    Inhalt: This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. • Covers cutting-edge techniques, including graph cuts, machine learning and multiple view geometry • A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition and object tracking • More than 70 algorithms are described in sufficient detail to implement • More than 350 full-color illustrations amplify the text • The treatment is self-contained, including all of the background mathematics • Additional resources at www.computervisionmodels.com
    Anmerkung: Title from publisher's bibliographic system (viewed on 18 Jul 2016). , Introduction -- Introduction to probability -- Common probability distributions -- Fitting probability models -- The normal distribution -- Learning and inference in vision -- Modeling complex data densities -- Regression models -- Classification models -- Graphical models -- Models for chains and trees -- Models for grids -- Image preprocessing and feature extraction -- The pinhole camera -- Models for transformations -- Multiple cameras -- Models for shape -- Models for style and identity -- Temporal models -- Models for visual words. , English
    Weitere Ausg.: ISBN 1-107-01179-5
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    New York, NY : Cambridge University Press
    UID:
    gbv_689316372
    Umfang: xviii, 580 Seiten , Illustrationen, Diagramme , 26 cm
    ISBN: 9781107011793
    Inhalt: "This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. [bullet] Covers cutting-edge techniques, including graph cuts, machine learning and multiple view geometry [bullet] A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition and object tracking [bullet] More than 70 algorithms are described in sufficient detail to implement [bullet] More than 350 full-color illustrations amplify the text [bullet] The treatment is self-contained, including all of the background mathematics [bullet] Additional resources at www.computervisionmodels.com"--
    Anmerkung: Literaturverzeichnis: Seite 533-566 , Hier auch später erschienene, unveränderte Nachdrucke , Machine generated contents note: Part I. Probability: 1. Introduction to probability; 2. Common probability distributions; 3. Fitting probability models; 4. The normal distribution; Part II. Machine Learning for Machine Vision: 5. Learning and inference in vision; 6. Modeling complex data densities; 7. Regression models; 8. Classification models; Part III. Connecting Local Models: 9. Graphical models; 10. Models for chains and trees; 11. Models for grids; Part IV. Preprocessing: 12. Image preprocessing and feature extraction; Part V. Models for Geometry: 13. The pinhole camera; 14. Models for transformations; 15. Multiple cameras; Part VI. Models for Vision: 16. Models for style and identity; 17. Temporal models; 18. Models for visual words; Part VII. Appendices: A. Optimization; B. Linear algebra; C. Algorithms.
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Prince, Simon J. D., 1972 - Computer vision New York, NY : Cambridge Univ. Press, 2012 ISBN 9781139515054
    Sprache: Englisch
    Fachgebiete: Informatik
    RVK:
    RVK:
    Schlagwort(e): Maschinelles Sehen ; Maschinelles Lernen ; Statistisches Modell
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781107011083?
Meinten Sie 9781107011113?
Meinten Sie 9781107011496?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz