Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9959238702002883
    Umfang: 1 online resource (xvi, 320 pages) : , digital, PDF file(s).
    Ausgabe: 1st ed.
    ISBN: 1-139-88898-6 , 1-139-57957-6 , 1-139-56919-8 , 1-139-57275-X , 1-139-57352-7 , 1-139-57100-1 , 1-139-13711-5 , 1-283-63871-1 , 1-139-57009-9
    Serie: Cambridge tracts in mathematics ; 194
    Inhalt: This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) - proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , Preliminaries -- Two-dimensional Navier-Stokes equations -- Uniqueness of stationary measure and mixing -- Ergodicity and limiting theorems -- Inviscid limit -- Miscellanies. , English
    Weitere Ausg.: ISBN 1-107-02282-7
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Buch
    Buch
    Cambridge [u.a.] :Cambridge Univ. Press,
    Dazugehörige Titel
    UID:
    almafu_BV048537904
    Umfang: xvi, 320 Seiten : , Illustrationen ; , 23 cm.
    Ausgabe: First published
    ISBN: 978-1-107-02282-9 , 1-107-02282-7
    Serie: Cambridge tracts in mathematics 194
    Inhalt: "This book deals with basic problems and questions, interesting for physicists and engineers working in the theory of turbulence. Accordingly Chapters 3-5 (which form the main part of this book) end with sections, where we explain the physical relevance of the obtained results. These sections also provide brief summaries of the corresponding chapters. In Chapters 3 and 4, our main goal is to justify, for the 2D case, the statistical properties of fluid's velocity"--
    Inhalt: "This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) - proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces"--
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 978-1-139-13711-9
    Sprache: Englisch
    Fachgebiete: Physik , Mathematik
    RVK:
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Hydrodynamik ; Statistik ; Turbulenztheorie ; Navier-Stokes-Gleichung
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    Cambridge [u.a.] : Cambridge Univ. Press
    UID:
    gbv_719602580
    Umfang: XVI, 320 S. , Ill., graph. Darst. , 23 cm
    ISBN: 9781107022829 , 1107022827
    Serie: Cambridge tracts in mathematics 194
    Inhalt: "This book deals with basic problems and questions, interesting for physicists and engineers working in the theory of turbulence. Accordingly Chapters 3-5 (which form the main part of this book) end with sections, where we explain the physical relevance of the obtained results. These sections also provide brief summaries of the corresponding chapters. In Chapters 3 and 4, our main goal is to justify, for the 2D case, the statistical properties of fluid's velocity"--
    Inhalt: "This book is dedicated to the mathematical study of two-dimensional statistical hydrodynamics and turbulence, described by the 2D Navier-Stokes system with a random force. The authors' main goal is to justify the statistical properties of a fluid's velocity field u(t,x) that physicists assume in their work. They rigorously prove that u(t,x) converges, as time grows, to a statistical equilibrium, independent of initial data. They use this to study ergodic properties of u(t,x) - proving, in particular, that observables f(u(t,.)) satisfy the strong law of large numbers and central limit theorem. They also discuss the inviscid limit when viscosity goes to zero, normalising the force so that the energy of solutions stays constant, while their Reynolds numbers grow to infinity. They show that then the statistical equilibria converge to invariant measures of the 2D Euler equation and study these measures. The methods apply to other nonlinear PDEs perturbed by random forces"--
    Anmerkung: Machine generated contents note: 1. Preliminaries; 2. Two-dimensional Navier-Stokes equations; 3. Uniqueness of stationary measure and mixing; 4. Ergodicity and limiting theorems; 5. Inviscid limit; 6. Miscellanies; 7. Appendix; 8. Solutions to some exercises.
    Weitere Ausg.: Online-Ausg. (MyiLibrary) Kuksin, Sergej B., 1955 - Mathematics of two-dimensional turbulence Cambridge, [England] : Cambridge University Press, 2012 ISBN 9781283638715
    Weitere Ausg.: ISBN 9781139571005
    Weitere Ausg.: ISBN 9781139572750
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Kuksin, Sergej B., 1955 - Mathematics of two-dimensional turbulence Cambridge, [England] : Cambridge University Press, 2012 ISBN 9781283638715
    Weitere Ausg.: ISBN 9781139571005
    Weitere Ausg.: ISBN 9781139572750
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Kuksin, Sergej B., 1955 - Mathematics of two-dimensional turbulence Cambridge, [England] : Cambridge University Press, 2011 ISBN 9781139572750
    Weitere Ausg.: Erscheint auch als Online-Ausgabe Kuksin, Sergej B., 1955 - Mathematics of two-dimensional turbulence Cambridge : Cambridge University Press, 2012 ISBN 9781139137119
    Sprache: Englisch
    Fachgebiete: Physik , Mathematik
    RVK:
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Hydrodynamik ; Statistik ; Turbulenztheorie ; Navier-Stokes-Gleichung
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cambridge, [England] ; : Cambridge University Press,
    UID:
    almahu_9948317100702882
    Umfang: xvi, 320 p. : , ill.
    Ausgabe: Electronic reproduction. Ann Arbor, MI : ProQuest, 2015. Available via World Wide Web. Access may be limited to ProQuest affiliated libraries.
    Serie: Cambridge tracts in mathematics ; 194
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781107012899?
Meinten Sie 9781107002029?
Meinten Sie 9781107002821?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz