Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • 1
    Online-Ressource
    Online-Ressource
    Cambridge : Cambridge University Press
    UID:
    gbv_1022343955
    Umfang: 1 Online-Ressource (XIII, 642 Seiten) , Illustrationen
    ISBN: 9781139236003
    Serie: Cambridge series in statistical and probabilistic mathematics 46
    Inhalt: All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations
    Anmerkung: Title from publisher's bibliographic system (viewed on 27 Apr 2018)
    Weitere Ausg.: ISBN 9781107028289
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Clarke, Bertrand, 1963 - Predictive statistics Cambridge : Cambridge University Press, 2018 ISBN 9781107028289
    Sprache: Englisch
    Fachgebiete: Wirtschaftswissenschaften
    RVK:
    Schlagwort(e): Vorhersagetheorie ; Deskriptive Statistik ; Explorative Datenanalyse ; Methodologie
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9960118095302883
    Umfang: 1 online resource (xiii, 642 pages) : , digital, PDF file(s).
    ISBN: 1-108-59420-4 , 1-108-63303-X , 1-139-23600-8
    Serie: Cambridge series in statistical and probabilistic mathematics ; 46
    Inhalt: All scientific disciplines prize predictive success. Conventional statistical analyses, however, treat prediction as secondary, instead focusing on modeling and hence estimation, testing, and detailed physical interpretation, tackling these tasks before the predictive adequacy of a model is established. This book outlines a fully predictive approach to statistical problems based on studying predictors; the approach does not require predictors correspond to a model although this important special case is included in the general approach. Throughout, the point is to examine predictive performance before considering conventional inference. These ideas are traced through five traditional subfields of statistics, helping readers to refocus and adopt a directly predictive outlook. The book also considers prediction via contemporary 'black box' techniques and emerging data types and methodologies where conventional modeling is so difficult that good prediction is the main criterion available for evaluating the performance of a statistical method. Well-documented open-source R code in a Github repository allows readers to replicate examples and apply techniques to other investigations.
    Anmerkung: Title from publisher's bibliographic system (viewed on 27 Apr 2018).
    Weitere Ausg.: ISBN 1-107-02828-0
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781107021389?
Meinten Sie 9781107022249?
Meinten Sie 9781107020689?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz