Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Erscheinungszeitraum
Person/Organisation
Fachgebiete(RVK)
Schlagwörter
Zugriff
  • 1
    Buch
    Buch
    Cambridge [u.a.] : Cambridge Univ. Press
    UID:
    b3kat_BV041204788
    Umfang: XXII, 232 S. , graph. Darst.
    ISBN: 9781107619289 , 9781107030657
    Serie: Textbooks / Institute of Mathematical Statistics 3
    Anmerkung: Hier auch später erschienene, unveränderte Nachdrucke
    Sprache: Englisch
    Fachgebiete: Technik , Mathematik
    RVK:
    RVK:
    Schlagwort(e): Bayes-Inferenz ; Lehrbuch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge : Cambridge University Press
    UID:
    gbv_875082629
    Umfang: 1 Online-Ressource (xxii, 232 Seiten)
    ISBN: 9781107030657 , 9781107619289 , 9781139344203
    Serie: Institute of Mathematical Statistics textbooks 3
    Inhalt: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include Matlab computations, and the numerous end-of-chapter exercises include computational assignments. Matlab code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods
    Weitere Ausg.: ISBN 9781107030657
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781107030657
    Sprache: Englisch
    URL: Volltext  (URL des Erstveröffentlichers)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almahu_9948233785502882
    Umfang: 1 online resource (xxii, 232 pages) : , digital, PDF file(s).
    ISBN: 9781139344203 (ebook)
    Serie: Institute of Mathematical Statistics textbooks ; 3
    Inhalt: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include Matlab computations, and the numerous end-of-chapter exercises include computational assignments. Matlab code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015).
    Weitere Ausg.: Print version: ISBN 9781107030657
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almafu_9960117422902883
    Umfang: 1 online resource (xxii, 232 pages) : , digital, PDF file(s).
    ISBN: 1-107-42433-X , 1-139-34420-X
    Serie: Institute of Mathematical Statistics textbooks ; 3
    Inhalt: Filtering and smoothing methods are used to produce an accurate estimate of the state of a time-varying system based on multiple observational inputs (data). Interest in these methods has exploded in recent years, with numerous applications emerging in fields such as navigation, aerospace engineering, telecommunications and medicine. This compact, informal introduction for graduate students and advanced undergraduates presents the current state-of-the-art filtering and smoothing methods in a unified Bayesian framework. Readers learn what non-linear Kalman filters and particle filters are, how they are related, and their relative advantages and disadvantages. They also discover how state-of-the-art Bayesian parameter estimation methods can be combined with state-of-the-art filtering and smoothing algorithms. The book's practical and algorithmic approach assumes only modest mathematical prerequisites. Examples include Matlab computations, and the numerous end-of-chapter exercises include computational assignments. Matlab code is available for download at www.cambridge.org/sarkka, promoting hands-on work with the methods.
    Anmerkung: Title from publisher's bibliographic system (viewed on 05 Oct 2015). , English
    Weitere Ausg.: ISBN 1-107-61928-9
    Weitere Ausg.: ISBN 1-107-03065-X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781107016057?
Meinten Sie 9781107000650?
Meinten Sie 9781107003675?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz