UID:
almafu_9961294332902883
Umfang:
1 online resource (xxxvii, 935 pages) :
,
digital, PDF file(s).
Ausgabe:
First edition.
ISBN:
9781108640114
,
1108640117
,
9781108630283
,
1108630286
,
9781108551748
,
1108551742
Inhalt:
This pioneering, course-tested text is the first to combine communications theory with the physics of optical communications. Comprehensive and rigorous, it brings together an in-depth treatment of the physical characteristics of the guided lightwave channel with the study of modern methods of algorithmic-based communication in time and space. The many different levels at which a lightwave communication signal can be described are integrated to provide a unified explanation of how a commonplace bit stream is transformed into a physical lightwave, how that lightwave travels through an optical fiber, and how it is then transformed back into the bit stream. Background fundamentals such as linear systems and electromagnetics are explained in relation to modern topics such as channel models, encoding, modulation and interference, and end-of-chapter problems are provided throughout. This is an essential text for students taking courses on optical communications, as well as researchers and professionals working in the area.
Anmerkung:
Title from publisher's bibliographic system (viewed on 26 Mar 2019).
,
Cover -- Half-title page -- Title page -- Copyright page -- Dedication -- Epigraph -- Contents -- Preface -- Acknowledgements -- Notation -- Primary Symbols -- List of Symbols -- 1 Introduction -- 1.1 Digital Lightwave Communication Systems -- 1.1.1 Channel Coding -- 1.1.2 Modulation -- 1.1.3 Types of Lightwave Channels -- 1.1.4 Demodulation -- 1.1.5 Detection and Decoding -- 1.1.6 Error Probabilities -- 1.2 Lightwave Signal Models -- 1.2.1 Relationship of Wave Optics to Photon Optics -- 1.2.2 Choosing a Signal Model -- 1.3 Modulation and Demodulation -- 1.3.1 Phase-Synchronous Systems -- 1.3.2 Phase-Asynchronous Systems -- 1.4 Codes and Coded-Modulation -- 1.5 Multiplexing -- 1.6 Communication Channels -- 1.6.1 Common Wave-Optics Communication Channels -- 1.6.2 Channel Capacity -- 1.7 References -- 1.8 Historical Notes -- 1.9 Problems -- 2 Background -- 2.1 Linear Systems -- 2.1.1 Bandwidth and Timewidth -- 2.1.2 Passband and Complex-Baseband Signals -- 2.1.3 Signal Space -- 2.2 Random Signals -- 2.2.1 Probability Distribution Functions -- 2.2.2 Random Processes -- 2.3 Electromagnetics -- 2.3.1 Material Properties -- 2.3.2 The Wave Equation -- 2.3.3 Geometrical Optics -- 2.3.4 Polarization -- 2.3.5 Random Lightwave Fields -- 2.4 References -- 2.5 Problems -- 3 The Guided Lightwave Channel -- 3.1 Characteristics of an Optical Fiber -- 3.1.1 Fiber Structure -- 3.1.2 Optical Fiber Attenuation -- 3.2 Guided Signal Propagation -- 3.2.1 Guided Rays -- 3.2.2 Guided Waves -- 3.2.3 Guided Photon Streams -- 3.3 Waveguide Geometries -- 3.3.1 Modes in a Slab Waveguide -- 3.3.2 Modes in a Step-Index Fiber -- 3.3.3 Modes in a Graded-Index Fiber -- 3.4 Mode Coupling -- 3.4.1 Derivation of the Coupled Equations -- 3.4.2 Solution of the Coupled Equations -- 3.5 References -- 3.6 Historical Notes -- 3.7 Problems -- 4 The Linear Lightwave Channel.
,
4.1 Ray Dispersion -- 4.2 Wave Dispersion -- 4.2.1 Dispersion in a Slab Waveguide -- 4.2.2 Dispersion for a Linearly Polarized Mode -- 4.3 Narrowband-Signal Dispersion -- 4.3.1 Narrowband Dispersion -- 4.3.2 Material Dispersion -- 4.3.3 Narrowband Signal Propagation -- 4.4 Group Delay -- 4.4.1 Mode-Groups in a Step-Index Fiber -- 4.4.2 Mode-Groups in a Graded-Index Fiber -- 4.4.3 Step-Index Multimode Fiber -- 4.4.4 Wavelength-Dependent Group Delay -- 4.5 Linear Distortion -- 4.5.1 Distortion from Mode-Dependent Group Delay -- 4.5.2 Distortion from Wavelength-Dependent Group Delay -- 4.5.3 Dispersion-Controlled Optical Fiber -- 4.5.4 Independent Sources of Distortion -- 4.6 Polarization-Mode Dispersion -- 4.6.1 Jones Representation -- 4.6.2 Stokes Representation -- 4.6.3 Distortion from Polarization-Dependent Group Delay -- 4.6.4 Distortion from Polarization-Dependent Loss -- 4.7 References -- 4.8 Historical Notes -- 4.9 Problems -- 5 The Nonlinear Lightwave Channel -- 5.1 Anharmonic Material Response -- 5.1.1 Wave-Optics Description -- 5.1.2 Photon-Optics Description -- 5.2 Kinds of Nonlinearities -- 5.2.1 The Kerr Nonlinearity -- 5.2.2 Raman Scattering -- 5.2.3 Brillouin Scattering -- 5.3 Signal Propagation in a Nonlinear Fiber -- 5.3.1 Phase Matching -- 5.3.2 Intensity-Dependent Index Change -- 5.3.3 Nonlinear Propagation Constant -- 5.3.4 Characteristic Lengths -- 5.3.5 Classification of Nonlinear Channels -- 5.4 Single-Carrier Nonlinear Schrödinger Equation -- 5.4.1 Nonlinear Narrowband Signal Propagation -- 5.4.2 Nonlinear Distortion for a Single Pulse -- 5.5 Interference in a Nonlinear Fiber -- 5.5.1 Cross-Phase Modulation -- 5.5.2 Nonlinear Schrödinger Equation for Multiple Subcarriers -- 5.5.3 Nonlinear Interference -- 5.6 Computational Methods -- 5.7 References -- 5.8 Historical Notes -- 5.9 Problems -- 6 Random Signals.
,
6.1 The Physics of Randomness and Noise -- 6.1.1 Randomness and Entropy -- 6.1.2 Photon-Matter Interactions -- 6.1.3 Expected Energy -- 6.2 Probability Distribution Functions -- 6.2.1 Thermal Noise -- 6.2.2 Spontaneous Emission Noise -- 6.2.3 Photon Noise -- 6.3 The Poisson Transform -- 6.3.1 The Direct Poisson Transform -- 6.3.2 The Inverse Poisson Transform -- 6.3.3 Forms of Uncertainty -- 6.3.4 The Gordon Distribution -- 6.4 Power Density Spectra -- 6.4.1 Power Density Spectrum of the Lightwave Noise Power -- 6.4.2 Power Density Spectrum of the Photodetected Signal with Additive Noise -- 6.4.3 Power Density Spectrum of the Photodetected Signal with Shot Noise -- 6.5 Direct Photodetection with Gaussian Noise -- 6.5.1 Continuous Probability Density Functions -- 6.5.2 Discrete Probability Mass Functions -- 6.6 Balanced Photodetection with Gaussian Noise -- 6.6.1 Orthogonal Expansion -- 6.6.2 Special Cases -- 6.6.3 Direct Photodetection -- 6.6.4 Spatially Correlated Modes -- 6.7 Bandlimited Shot Noise -- 6.7.1 Approximate Analysis -- 6.7.2 General Analysis -- 6.8 References -- 6.9 Historical Notes -- 6.10 Problems -- 7 Lightwave Components -- 7.1 Passive Lightwave Components -- 7.1.1 Lightwave Couplers -- 7.1.2 Delay-Line Interferometers -- 7.1.3 Multipath Interference -- 7.1.4 Optical Filters -- 7.2 Semiconductors -- 7.3 Lightwave Receivers -- 7.3.1 Photodetectors -- 7.3.2 Lightwave Demodulators -- 7.4 Lightwave Amplifiers -- 7.4.1 Doped-Fiber Lightwave Amplifiers -- 7.4.2 Gain in a Doped-Fiber Amplifier -- 7.4.3 Semiconductor Lightwave Amplifiers -- 7.4.4 Wavelength Dependence of the Gain -- 7.4.5 Noise from Multiple Amplifiers -- 7.5 Lightwave Transmitters -- 7.5.1 Light-Emitting Diodes -- 7.5.2 Laser Diodes -- 7.5.3 External Modulators -- 7.6 Noise in Lightwave Receivers -- 7.6.1 Dark-Current Noise -- 7.6.2 Internal-Gain Noise.
,
7.7 Noise in Lightwave Amplifiers -- 7.7.1 Power Density Spectrum -- 7.7.2 Probability Distribution Functions -- 7.7.3 Noise Figure -- 7.7.4 Nonlinear Phase Noise -- 7.8 Noise in Laser Transmitters -- 7.8.1 Power Density Spectra -- 7.8.2 Probability Density Functions -- 7.9 References -- 7.10 Historical Notes -- 7.11 Problems -- 8 The Electrical Channel -- 8.1 The Lightwave Channel -- 8.1.1 Linear Single-Input Single-Output Lightwave Channels -- 8.1.2 Multiplex Channels -- 8.1.3 Multi-input Multi-output Channels -- 8.1.4 Channel Statistics in Time and Space -- 8.2 Lightwave Demodulation -- 8.2.1 Demodulation of the Lightwave Complex Amplitude -- 8.2.2 Demodulation of the Lightwave Intensity -- 8.2.3 Demodulation of Pulse Intensity in Multiple Modes -- 8.2.4 Demodulation of Pulse Intensity in a Single Mode -- 8.2.5 Cumulative Electrical Power Density Spectrum -- 8.3 Discrete-Time Electrical Channels -- 8.3.1 Interpolation and Sampling -- 8.3.2 Conventional Discrete-Time Channels -- 8.4 References -- 8.5 Historical References -- 8.6 Problems -- 9 The Information Channel -- 9.1 Prior and Posterior Distributions -- 9.2 Methods of Modulation -- 9.2.1 Signal Constellations -- 9.2.2 Nyquist Pulses -- 9.2.3 Detection -- 9.2.4 Partial-Response Signaling -- 9.2.5 Sampler Response -- 9.3 Methods of Reception -- 9.4 Detection Filters -- 9.4.1 Linear Detection Filters -- 9.4.2 Detection Filters for Additive White Noise -- 9.4.3 Detection Filters for Signal-Dependent Noise -- 9.4.4 Detection Filters for General Noise -- 9.5 Detection of a Binary Signal -- 9.5.1 Detection of a Binary Wave-Optics Signal -- 9.5.2 Detection of a Binary Photon-Optics Signal -- 9.5.3 Binary Detection for a Dispersive Channel -- 9.5.4 Displacement Detection of a Binary Signal -- 9.6 Detection of a Multilevel Signal -- 9.6.1 Detection of a Multilevel Wave-Optics Signal.
,
9.6.2 Detection of a Multilevel Photon-Optics Signal -- 9.7 Noise Models for Intensity Detection -- 9.7.1 Additive Electrical-Noise Model -- 9.7.2 Signal-Dependent Shot-Noise Model -- 9.7.3 Signal-Noise Mixing Model -- 9.8 References -- 9.9 Historical Notes -- 9.10 Problems -- 10 Modulation and Demodulation -- 10.1 Modulation Formats -- 10.1.1 Complex Signal Constellations -- 10.1.2 Complex-Baseband Modulation -- 10.1.3 Binary Modulation Formats -- 10.1.4 Multisymbol Modulation Formats -- 10.1.5 Efficiency of Modulation Formats -- 10.2 Phase-Synchronous Demodulation -- 10.2.1 Demodulation of Binary Formats -- 10.2.2 Demodulation of Multilevel Real-Valued Formats -- 10.2.3 Detection of Multilevel Complex-Valued Formats -- 10.2.4 Demodulation with Phase Noise -- 10.2.5 Demodulation with Shot Noise -- 10.3 Dual-Polarization Signaling -- 10.3.1 Constellations in Four-Dimensional Signal Space -- 10.3.2 Dual-Polarization Modulation and Demodulation -- 10.4 Constellations in Signal Space -- 10.4.1 General Signal Constellations -- 10.4.2 Constellations on the Complex Plane -- 10.4.3 Orthogonal Constellations -- 10.4.4 Nonorthogonal Constellations -- 10.5 Noncoherent Demodulation -- 10.5.1 Detection of Noncoherent Orthogonal Signals -- 10.5.2 Detection of Differential-Phase-Shift-Keyed Signals -- 10.5.3 Detection of Noncoherent On-Off-Keyed Intensity Signals -- 10.6 Energy Demodulation -- 10.6.1 Sample Statistic -- 10.7 References -- 10.8 Historical Notes -- 10.9 Problems -- 11 Interference -- 11.1 Intersymbol Interference -- 11.2 Equalization -- 11.2.1 Zero-Forcing Equalization -- 11.2.2 Matched Filter Equalization -- 11.2.3 Minimum-Error Linear Equalizer -- 11.2.4 Detection Filters for Additive White Noise -- 11.2.5 Decision Feedback -- 11.2.6 Prefiltering and Precoding -- 11.3 Sequence Detection -- 11.3.1 Trellis Diagrams.
,
11.3.2 Minimum-Distance Sequence Detection.
Weitere Ausg.:
ISBN 9781108427562
Weitere Ausg.:
ISBN 1108427561
Sprache:
Englisch
Bookmarklink