UID:
almafu_9961202990402883
Umfang:
1 online resource (ix, 409 pages) :
,
digital, PDF file(s).
ISBN:
1-108-80614-7
,
1-108-84610-6
,
1-108-84776-5
Inhalt:
High pressure mineral physics is a field that has shaped our understanding of deep planetary interiors and revealed new material phenomena occurring at extreme conditions. Comprised of sixteen chapters written by well-established experts, this book covers recent advances in static and dynamic compression techniques and enhanced diagnostic capabilities, including synchrotron X-ray and neutron diffraction, spectroscopic measurements, in situ X-ray diffraction under dynamic loading, and multigrain crystallography at megabar pressures. Applications range from measuring equations of state, elasticity, and deformation of materials at high pressure, to high pressure synthesis, thermochemistry of high pressure phases, and new molecular compounds and superconductivity under extreme conditions. This book also introduces experimental geochemistry in the laser-heated diamond-anvil cell enabled by the focused ion beam technique for sample recovery and quantitative chemical analysis at submicron scale. Each chapter ends with an insightful perspective of future directions, making it an invaluable source for graduate students and researchers.
Anmerkung:
Title from publisher's bibliographic system (viewed on 03 Aug 2023).
,
Cover -- Half-title -- Title page -- Copyright information -- Contents -- List of Contributors -- 1 Introduction to Static and Dynamic High-Pressure Mineral Physics -- 1.1 Introduction -- 1.2 Chapter Summaries -- References -- 2 Development of Static High-Pressure Techniques and the Study of the Earth's Deep Interior in the Last 50 Years and Its Future -- 2.1 Introduction -- 2.2 Early Days of the High-Pressure Experiments to Study the Earth's Deep Interior -- 2.3 Developments of Multi-Anvil High Pressure Devices in Japan -- 2.4 Invention and Development of Diamond Anvil Apparatus -- 2.5 Development of Laser Heating in Diamond Anvil Cell and Melting Experiments -- 2.6 Combination of High-Pressure Apparatus with Synchrotron Radiation -- 2.7 Efforts to Extend the Pressure Range beyond the Limit of Diamond Anvils -- 2.8 Future Perspectives -- References -- 3 Applications of Synchrotron and FEL X-Rays in High-Pressure Research -- 3.1 Introduction -- 3.2 A Brief History of High-Pressure X-Ray Studies -- 3.2.1 High-Pressure X-Ray Diffraction -- 3.2.2 High-Pressure X-Ray Spectroscopy -- 3.2.3 High-Pressure Inelastic X-Ray Scattering -- 3.2.4 High-Pressure X-Ray Imaging -- 3.3 Highlights from High-Pressure Research Using Synchrotron and FEL X-Rays -- 3.3.1 Ultrahigh-Pressure Generation -- 3.3.2 Amorphous Materials at High Pressure -- 3.3.3 Transition Kinetics and Materials Metastability -- 3.4 Outlook on Future Developments -- 3.4.1 High-Pressure Research at MBA Storage Ring Facilities -- 3.4.2 High-Pressure Research at X-Ray FELs -- Acknowledgments -- References -- 4 Development of Large-Volume Diamond Anvil Cell for Neutron Diffraction: The Neutron Diamond Anvil Cell Project at ORNL -- 4.1 Introduction -- 4.2 Neutron Diamond Cells at Oak Ridge National Laboratory -- 4.3 Advances in Neutron Diamond Cells -- 4.4 Neutron Diffraction on Ice.
,
4.5 Conclusions -- Acknowledgments -- References -- 5 Light-Source Diffraction Studies of Planetary Materials under Dynamic Loading -- 5.1 Introduction -- 5.2 Shock Wave Experiments -- 5.3 Continuum Diagnostics -- 5.4 In Situ X-Ray Diffraction under Plate Impact Shock Loading -- 5.4.1 Silica -- 5.4.2 Forsterite -- 5.4.3 Diamond -- 5.5 Laser-Shock Studies at X-Ray Free Electron Laser Sources -- 5.5.1 Silicate Liquids and Glasses -- 5.5.2 Hydrocarbons -- 5.5.3 Carbides -- 5.6 Conclusions and Outlook -- References -- 6 New Analysis of Shock-Compression Data for Selected Silicates -- 6.1 Introduction -- 6.2 Shock Compression -- 6.3 Selected Silicates under Shock Compression -- 6.3.1 Garnets -- 6.3.2 Tourmaline -- 6.3.3 Nepheline -- 6.3.4 Topaz -- 6.3.5 Spodumene -- 6.4 Concluding Remarks -- Acknowledgments -- References -- 7 Scaling Relations for Combined Static and Dynamic High-Pressure Experiments -- 7.1 Introduction -- 7.2 Waste Heat -- 7.3 Shock Loading Statically Precompressed Samples -- 7.4 Conclusion -- Acknowledgments -- References -- 8 Equations of State of Selected Solids for High-Pressure Research and Planetary Interior Density Models -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Shockwave Experiments -- 8.2.2 Static Compression Experiments -- 8.2.2.1 In Situ X-Ray Diffraction in Laser-Heated Diamond Anvil Cell -- 8.2.2.2 In Situ X-Ray Diffraction in the Multi-Anvil Press -- 8.3 Equation of State at Room Temperature -- 8.3.1 Common Pressure Standards -- 8.3.1.1 Neon -- 8.3.1.2 NaCl -- 8.3.1.3 MgO -- 8.3.1.4 Au -- 8.3.1.5 Pt -- 8.3.1.6 Other Pressure Standards -- 8.4 Thermal Pressure -- 8.4.1 Models of Thermal Equation of State -- 8.4.2 Data Analysis and Thermal Pressure Calculations -- 8.5 Density Profiles of the Deep Mantle and Core -- 8.5.1 Mantle Materials -- 8.5.2 Core Materials -- 8.6 Perspectives -- Acknowledgments -- References.
,
9 Elasticity at High Pressure with Implication for the Earth's Inner Core -- 9.1 Introduction -- 9.2 Summary of Elastic Wave Velocity Data for hcp Fe and Fe Light Element Alloys -- 9.3 Methods of Elastic Wave Velocity Measurements -- 9.3.1 Ultrasonic Interferometry -- 9.3.2 Brillouin Scattering -- 9.3.3 Inelastic X-Ray Scattering -- 9.3.4 Nuclear Inelastic Scattering -- 9.3.5 Shock Wave -- 9.3.6 Pulsed Laser -- 9.3.7 Radial X-Ray Diffraction -- 9.4 Elastic Wave Velocity at High Pressure -- 9.4.1 Room Temperature Data -- 9.4.2 High-Temperature Data -- 9.5 Implications for the Earth's Core -- 9.6 Concluding Remarks -- Acknowledgments -- References -- 10 Multigrain Crystallography at Megabar Pressures -- 10.1 Introduction -- 10.2 Multigrain Indexation at High Pressures -- 10.3 Single-Crystal Structure Determination at Megabar Pressures -- 10.3.1 Calibration and Powder Diffraction Data -- 10.3.2 Multigrain Indexation and Grain Selection -- 10.3.3 Single-Crystal Structure Determination from Multigrain Data -- 10.3.4 Advantages of Applying the Multigrain Method to High-Pressure Data Sets -- 10.4 Online Multigrain Data Analysis during Synchrotron Sessions -- 10.5 Future Perspectives -- 10.5.1 Pressure Determination in Ultrahigh-Pressure Experiments -- 10.5.2 Combination of In Situ X-Ray Diffraction and Ex Situ Chemical Analysis Techniques -- 10.5.3 Limitations of the Multigrain Techniques -- Acknowledgments -- References -- 11 Deformation and Plasticity of Materials under Extreme Conditions -- 11.1 Introduction -- 11.2 Experimental Techniques -- 11.2.1 Plasticity in the Large-Volume Press -- 11.2.2 Plasticity in Diamond Anvil Cells -- 11.2.3 Computational Plasticity -- 11.3 In Situ Characterization Techniques -- 11.3.1 Deformation -- 11.3.2 Polycrystal Properties -- 11.3.2.1 Lattice-Preferred Orientations -- 11.3.2.2 Stress and Strains.
,
11.3.2.3 Interpretation Using Self-Consistent Models -- 11.3.3 Plasticity at the Grain Scale -- 11.3.3.1 Multigrain Crystallography -- 11.3.3.2 Defects -- 11.4 Sample Results -- 11.4.1 Deep Earth Materials -- 11.4.2 Materials Science -- 11.5 Perspectives -- 11.5.1 Multiphase Aggregates -- 11.5.2 Technical Developments -- 11.6 Conclusion -- Acknowledgments -- References -- 12 Synthesis of High-Pressure Silicate Polymorphs Using Multi-Anvil Press -- 12.1 Introduction -- 12.2 Multi-Anvil Press -- 12.2.1 Pressure Generation and Measurement -- 12.2.1.1 Pressure Generation and Limits on Capacity -- 12.2.1.2 Pressure Calibration and Uncertainties -- 12.2.2 Temperature Generation and Measurement -- 12.2.2.1 Heater -- 12.2.2.2 Thermocouple -- 12.2.2.3 Pressure Effect on Thermocouple's emf -- 12.2.2.4 Power Curve -- 12.3 Theoretical Basis for High-Pressure Synthesis -- 12.3.1 Nucleation and Growth from a Melt -- 12.3.1.1 Nucleation as a Function of Temperature -- 12.3.1.2 Growth as a Function of Temperature -- 12.3.1.3 Crystal Growth with Time -- 12.3.2 Growing Large Crystals from a Fluid Solution -- 12.3.3 Nucleation and Growth through Solid-State Transformation -- 12.4 Synthesis of Dense Silicate Polymorphs -- 12.4.1 Mg2SiO4 Wadsleyite and Ringwoodite -- 12.4.1.1 Growth of Wadsleyite and Ringwoodite from Anhydrous Melt -- 12.4.1.2 Growth of Wadsleyite and Ringwoodite from Hydrous Melt -- 12.4.1.3 Growth of Wadsleyite and Ringwoodite through Solid-State Transformation -- 12.4.2 MgSiO3 Bridgmanite -- 12.4.2.1 Grow MgSiO3 Crystals from Anhydrous Melt -- 12.4.2.2 Growth of MgSiO3 Crystals from Hydrous Melt -- 12.4.2.3 Growth of MgSiO3 Crystals through Solid- State Transformation -- 12.5 Characterization of Synthesis Products -- 12.6 Conclusions -- Acknowledgments -- References.
,
13 Investigation of Chemical Interaction and Melting Using Laser-Heated Diamond Anvil Cell -- 13.1 Introduction -- 13.2 Experimental Techniques and Procedures -- 13.2.1 Temperature Measurement in the Laser-Heated DAC -- 13.2.2 Pressure Determination -- 13.2.3 Preparation of Starting Material -- 13.2.4 Sample Loading Configuration -- 13.2.5 FIB Sample Recovery -- 13.3 Sample Characterization -- 13.3.1 Imaging and Element Mapping of the Recovered Samples -- 13.3.2 Quantitative Chemical Analyses of the Recovered Samples -- 13.4 Results from Representative Experiments -- 13.4.1 Metal-Silicate Interactions -- 13.4.2 Melting Relations in Mantle Phases and Solidification of the Deep Magma Ocean -- 13.4.3 Melting of Core Materials -- 13.4.3.1 Melting Relations in the Fe-FeS System -- 13.4.3.2 Melting Relations in the Fe-S-Si, Fe-S-O, and Fe-Si-O Systems -- 13.4.3.3 Melting Relations in the Fe-C, Fe-O, and Fe-C-H Systems -- 13.5 Perspectives -- Acknowledgments -- References -- 14 Molecular Compounds under Extreme Conditions -- 14.1 Introduction -- 14.2 Technical Developments -- 14.3 Experimental Research -- 14.3.1 Van der Waals Compounds -- 14.3.2 Rich Nitrogen Polymorphism -- 14.3.3 Dense Ices: Symmetrization of Hydrogen Bonds -- 14.3.4 Squeezing Hydrogen into Exotic States -- 14.4 Outlook -- Acknowledgments -- References -- 15 Superconductivity at High Pressure -- 15.1 Introduction -- 15.2 Searching for Room Temperature Superconductors -- 15.3 Metallic Hydrogen and Superconductivity -- 15.4 Metallic Hydrogen Alloys and Superconductivity -- 15.5 Tale of Superconductivity of Sulfur Hydride at High Pressure -- 15.6 Superconductivity in Lanthanum Hydride at High Pressure -- 15.7 Other Hydrides for RTSC on the Horizon -- 15.8 Perspectives -- References -- 16 Thermochemistry of High-Pressure Phases -- 16.1 The Power and Utility of Thermodynamics.
,
16.2 Advances in Calorimetric Methodology.
Weitere Ausg.:
Print version: Fei, Yingwei Static and Dynamic High Pressure Mineral Physics Cambridge : Cambridge University Press,c2022 ISBN 9781108479752
Sprache:
Englisch
URL:
https://doi.org/10.1017/9781108806145
Bookmarklink