Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Schlagwörter
  • 1
    Buch
    Buch
    Cambridge :Cambridge University Press,
    UID:
    almafu_BV048211174
    Umfang: xiv, 382 Seiten : , Illustrationen, Diagramme (schwarz-weiß).
    ISBN: 978-1-108-84054-5
    Inhalt: Ecohydrology is a fast-growing branch of science at the interface of ecology and geophysics, studying the interaction between soil, water, vegetation, microbiome, atmosphere, climate, and human society. This textbook gathers the fundamentals of hydrology, ecology, environmental engineering, agronomy, and atmospheric science to provide a rigorous yet accessible description of the tools necessary for the mathematical modelling of water, energy, carbon, and nutrient transport within the soil-plant-atmosphere continuum. By focusing on the dynamics at multiple time scales, from the diurnal scale in the soil-plant-atmospheric system, to long-term stochastic dynamics of water availability responsible for ecological patterns and environmental fluctuations, it explains the impact of hydroclimatic variability on vegetation and soil microbial systems through biogeochemical cycles and ecosystems under different socioeconomical pressures. It is aimed at advanced students, researchers and professionals in hydrology, ecology, Earth science, environmental engineering, environmental science, agronomy, and atmospheric science.
    Weitere Ausg.: Erscheint auch als Online-Ausgabe ISBN 9781108886321
    Sprache: Englisch
    Fachgebiete: Geographie , Biologie
    RVK:
    RVK:
    RVK:
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Hydrologie ; Wasserkreislauf ; Ökosystem
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Cambridge :Cambridge University Press,
    UID:
    almahu_9949265094302882
    Umfang: 1 online resource (xiv, 382 pages) : , digital, PDF file(s).
    ISBN: 9781108886321 (ebook)
    Inhalt: Ecohydrology is a fast-growing branch of science at the interface of ecology and geophysics, studying the interaction between soil, water, vegetation, microbiome, atmosphere, climate, and human society. This textbook gathers the fundamentals of hydrology, ecology, environmental engineering, agronomy, and atmospheric science to provide a rigorous yet accessible description of the tools necessary for the mathematical modelling of water, energy, carbon, and nutrient transport within the soil-plant-atmosphere continuum. By focusing on the dynamics at multiple time scales, from the diurnal scale in the soil-plant-atmospheric system, to long-term stochastic dynamics of water availability responsible for ecological patterns and environmental fluctuations, it explains the impact of hydroclimatic variability on vegetation and soil microbial systems through biogeochemical cycles and ecosystems under different socioeconomical pressures. It is aimed at advanced students, researchers and professionals in hydrology, ecology, Earth science, environmental engineering, environmental science, agronomy, and atmospheric science.
    Anmerkung: Title from publisher's bibliographic system (viewed on 03 Feb 2022).
    Weitere Ausg.: Print version: ISBN 9781108840545
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Cambridge, England :Cambridge University Press,
    UID:
    almafu_9961294055502883
    Umfang: 1 online resource (xiv, 382 pages) : , digital, PDF file(s).
    Ausgabe: First edition.
    ISBN: 9781108888981 , 1108888984 , 9781108886321 , 1108886329
    Inhalt: Ecohydrology is a fast-growing branch of science at the interface of ecology and geophysics, studying the interaction between soil, water, vegetation, microbiome, atmosphere, climate, and human society. This textbook gathers the fundamentals of hydrology, ecology, environmental engineering, agronomy, and atmospheric science to provide a rigorous yet accessible description of the tools necessary for the mathematical modelling of water, energy, carbon, and nutrient transport within the soil-plant-atmosphere continuum. By focusing on the dynamics at multiple time scales, from the diurnal scale in the soil-plant-atmospheric system, to long-term stochastic dynamics of water availability responsible for ecological patterns and environmental fluctuations, it explains the impact of hydroclimatic variability on vegetation and soil microbial systems through biogeochemical cycles and ecosystems under different socioeconomical pressures. It is aimed at advanced students, researchers and professionals in hydrology, ecology, Earth science, environmental engineering, environmental science, agronomy, and atmospheric science.
    Anmerkung: Title from publisher's bibliographic system (viewed on 03 Feb 2022). , Cover -- Half-title Page -- Title Page -- Copyright Page -- Contents -- Preface -- 1 Introduction -- 1.1 Ecohydrology -- 1.2 Water and Life -- 1.3 Water on Earth -- 1.4 The Hydrologic Cycle -- 1.5 The Soil Water Balance -- 1.6 Temporal Scales of Soil Moisture and Plant Dynamics -- 1.7 Soil Moisture, Biogeochemistry, and Society -- 1.8 Key Points -- 1.9 Notes, including Problems and Further Reading -- 2 Physics Background for Ecohydrology -- 2.1 Review of Thermodynamics -- 2.1.1 The First Law of Thermodynamics -- 2.1.2 The Second Law of Thermodynamics -- 2.1.3 Reversible Transformations -- 2.1.4 Open Systems: Enthalpy and Gibbs Electrochemical Potential -- 2.1.5 Extensivity and the Gibbs-Duhem Relationship -- 2.1.6 Ideal Gas -- 2.1.7 Incompressible Fluids -- 2.1.8 The Clausius-Clapeyron Equation -- 2.1.9 Properties of Water and Phase Changes -- 2.1.10 Atmospheric Air -- 2.1.11 Gravitational Field and Total Potential -- 2.1.12 Solutions and Osmotic Potential -- 2.1.13 Capillarity and Interface Phenomena -- 2.1.14 Total Water Potential -- 2.2 Dimensional Analysis and Similarity -- 2.2.1 Units of Measurements and Dimensions -- 2.2.2 Buckingham or Theorem -- 2.3 Turbulent Fluxes -- 2.3.1 Turbulence Similarity Theory -- 2.3.2 Logarithmic Profiles -- 2.3.3 Gradient-Flux Expressions -- 2.4 Dynamical Systems -- 2.4.1 One-Dimensional Case -- 2.4.2 Two-Dimensional Case -- 2.5 Key Points -- 2.6 Notes, including Problems and Further Reading -- 3 The Soil -- 3.1 Soil Types and Classification -- 3.1.1 Soil Layers and Taxonomy -- 3.1.2 Soil Texture -- 3.2 Hydraulic Properties of Soil -- 3.2.1 Soil Moisture -- 3.2.2 Soil Water-Retention Curve -- 3.2.3 Interpretation of the Soil Water-Retention Curve -- 3.2.4 Soil Hydraulic Conductivity -- 3.2.5 Interpretation of the Unsaturated Hydraulic Conductivity -- 3.3 Unsaturated-Soil Water Flow. , 3.3.1 Soil Water Continuity Equation -- 3.3.2 Richards' Equation -- 3.3.3 Vertically Averaged Soil Moisture Equation -- 3.4 Infiltration -- 3.4.1 Sorption Solution of Richards' Equation -- 3.4.2 Sorptivity and Infiltration -- 3.4.3 Matching Phases I, II, and III of Infiltration -- 3.4.4 From the Point Scale to the Plot Scale -- 3.5 Key Points -- 3.6 Notes, including Problems and Further Reading -- 4 Plants -- 4.1 Plant Water -- 4.2 The Soil-Plant-Atmosphere Continuum -- 4.3 Roots -- 4.3.1 Hydraulic Redistribution -- 4.4 Xylem -- 4.4.1 Xylem Embolism -- 4.4.2 Plant Capacitance -- 4.5 Leaves -- 4.6 Photosynthesis -- 4.6.1 Light Reaction -- 4.6.2 Dark Reaction (Calvin Cycle) -- 4.7 Modeling Net Assimilation -- 4.8 Stomatal Conductance -- 4.8.1 Jarvis' Approach -- 4.8.2 Physiological Model of Stomatal Conductance -- 4.8.3 A First Analysis of Transpiration and Plant Carbon Assimilation -- 4.9 Plant Water Stress -- 4.9.1 Physiological Effects of a Reduction in Plant Water Potential -- 4.9.2 Drought Tolerance and Escape Strategies: Osmotic Adjustment -- 4.10 Key Points -- 4.11 Notes, including Problems and Further Reading -- 5 The Atmosphere -- 5.1 Land-Atmosphere Exchanges of Water and Energy -- 5.1.1 Surface Energy Balance -- 5.1.2 Albedo -- 5.2 Evapotranspiration -- 5.2.1 Evaporation from Wet Surfaces -- 5.2.2 Combination Approach: the Penman Equation -- 5.2.3 Transpiration from Vegetation -- 5.2.4 Penman-Monteith Equation -- 5.3 Dynamics of the Atmospheric Boundary Layer (ABL) -- 5.3.1 ABL Characteristics -- 5.3.2 Evolution Equations for the ABL -- 5.3.3 Analytical Approximation to the ABL Dynamics -- 5.3.4 Thermodynamics and Atmospheric Convection -- 5.4 Coupling of the Soil-Plant-Atmosphere Continuum (SPAC) with the ABL -- 5.4.1 A Brief Review of the SPAC -- 5.4.2 Diurnal Evolution of the SPAC-ABL Model. , 5.4.3 Soil Moisture Control on Atmospheric Convection -- 5.4.4 Multi-Day Dry-Down -- 5.4.5 Integration to the Daily Level -- 5.5 Key Points -- 5.6 Notes, including Problems and Further Reading -- 6 Stochastic Tools for Ecohydrology -- 6.1 Randomness in Ecohydrology -- 6.2 Background on Probability -- 6.2.1 Mixed Distributions -- 6.2.2 Characterization of Probability Distributions -- 6.3 Probability Models -- 6.3.1 Binomial Distribution -- 6.3.2 Poisson Distribution -- 6.3.3 Gaussian or Normal Distribution -- 6.3.4 Dirac Distribution -- 6.3.5 Exponential Distribution -- 6.3.6 Gamma Distribution -- 6.3.7 Pareto Distribution -- 6.3.8 Derived Distributions -- 6.3.9 Compound Distributions -- 6.4 Stochastic Processes -- 6.4.1 Markov Processes -- 6.4.2 Steady State, Ergodicity, and Seasonality -- 6.5 Poisson Process -- 6.6 Marked Poisson Process -- 6.7 Master Equation for Jump Processes -- 6.7.1 Steady-State PDF -- 6.7.2 Effect of an Upper Bound -- 6.8 Crossing Properties -- 6.8.1 Level Crossings -- 6.8.2 Mean First Passage Times -- 6.9 Key Points -- 6.10 Notes, including Problems and Further Reading -- 7 Stochastic Soil Moisture Dynamics -- 7.1 Soil Moisture Balance Equation -- 7.2 Dry-down and Soil Water Losses -- 7.2.1 Evapotranspiration -- 7.2.2 Percolation and Capillary Rise -- 7.2.3 Soil-Drying Process -- 7.3 Daily Timescale Description of Rainfall and Infiltration -- 7.3.1 Rainfall -- 7.3.2 Canopy Interception -- 7.3.3 Infiltration and Runoff -- 7.4 Probabilistic Soil Moisture Dynamics -- 7.4.1 Steady-State PDF for the Complete Model -- 7.4.2 Mean Water Balance -- 7.5 Minimalist Models of Soil Moisture Dynamics -- 7.6 Mean Water Balance and Budyko's Curve -- 7.6.1 Dimensional Analysis of Hydrologic Partitioning -- 7.6.2 Physical Interpretation of Budyko's Curve -- 7.7 Role of Fluctuations in Potential Evapotranspiration. , 7.8 Seasonal and Interannual Variations of Climate and Soil Moisture -- 7.8.1 Seasonality -- 7.8.2 Interannual Variability -- 7.9 Soil Moisture Feedback on Convective Rainfall -- 7.10 Key Points -- 7.11 Notes, including Problems and Further Reading -- 8 From Plant Water Stress to Ecosystem Structure -- 8.1 Probabilistic Description of Plant Water Stress and Carbon Assimilation -- 8.1.1 Static Stress -- 8.1.2 Dynamic Water Stress -- 8.1.3 Plant Assimilation and Productivity -- 8.1.4 Optimal Plant Conditions -- 8.2 Tree-Grass Coexistence in the Kalahari Precipitation Gradient -- 8.3 The Inverse Soil-Texture Effect -- 8.4 Impact of Interannual Variability on Plants: Tree and Shrub Encroachment -- 8.5 Impact of Seasonality on Plants: Intensive and Extensive Water Users -- 8.6 Water-Use Behaviors: Isohydric and Anisohydric Plants -- 8.7 Soil Moisture Controls on Plant Biodiversity -- 8.8 Key Points -- 8.9 Notes, including Problems and Further Reading -- 9 Soil Carbon and Nitrogen Cycles -- 9.1 Background -- 9.1.1 Soil Organic Matter and Carbon Cycle -- 9.1.2 Soil Nitrogen Cycle -- 9.2 Reduced-Order Models of Soil Organic Matter Decomposition -- 9.2.1 SOM Dynamics as a Predator-Prey System -- 9.2.2 Nonlinearities in the Soil Carbon Cycle -- 9.2.3 Stoichiometry of Litter Decomposition -- 9.3 Coupled Model of the Carbon and Nitrogen Cycles -- 9.3.1 Soil Organic Matter -- 9.3.2 Mineralization and Immobilization Rates -- 9.3.3 The Mineral Nitrogen -- 9.3.4 An Application to the Nylsvley Savanna -- 9.4 Outlook -- 9.4.1 Water and Soil Microbial Life -- 9.4.2 From Local Processes to Global Trends: Modeling Across Scales -- 9.5 Key Points -- 9.6 Notes, including Problems and Further Reading -- 10 Ecohydrology of Agroecosystems -- 10.1 Coupled Natural-Human Agroecosystems -- 10.1.1 Acceleration of Ecohydrological Processes and Land Degradation. , 10.1.2 A Dynamical Agroecosystem Model -- 10.1.3 Bistable Soil-Plant Dynamics -- 10.2 Irrigation -- 10.2.1 Irrigation Strategies -- 10.2.2 Stochastic Analysis -- 10.3 Dynamics of Soil Water Minerals -- 10.3.1 Soil Salinization -- 10.3.2 Phytoremediation -- 10.4 Water Resource and Agriculture Management as Stochastic Optimization Problems -- 10.4.1 Optimizing Irrigation for Crop Yield, Profitability, and Sustainability -- 10.4.2 A Dynamical System of Crop Model for Optimal Fertilization -- 10.4.3 Design of a Minimal-Cost Rainwater Harvesting Cistern -- 10.5 Sustainable Use of Soil and Water Resources as Optimal Control Problems -- 10.5.1 Optimal Groundwater Use -- 10.5.2 Sodic Soil Remediation -- 10.6 Key Points -- 10.7 Notes, including Problems and Further Reading -- References -- Index.
    Weitere Ausg.: ISBN 9781108840545
    Weitere Ausg.: ISBN 110884054X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781108440745?
Meinten Sie 9781108040945?
Meinten Sie 9781108405454?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz