Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
  • 1
    Online Resource
    Online Resource
    Chichester, West Sussex, United Kingdom :Wiley,
    UID:
    almahu_9949434587502882
    Format: 1 online resource (xiv, 283 pages)
    ISBN: 9781394188222 , 1394188226
    Content: "Fulfills the need for an introductive approach to the general concepts of FSI from the mathematical formulation to the physical interpretation of numerical simulations. Based on the author's experience in developing numerical codes for industrial applications in shipbuilding and in teaching FSI to both practicing engineers and within academia, it provides a comprehensive and self-contained guide that is geared toward both students and practitioners of mechanical engineering"--
    Note: Machine generated contents note: Foreword v Preface vii Images Credits ix 1 Fluid-Structure Interaction 1 1.1 A wide variety of problems 2 1.2 Analytical modelling of Fluid-Structure Interactions 3 1.2.1 Potential flow. Inertial coupling 4 1.2.2 Viscous flow. Viscous damping 8 1.2.3 Compressible flow. Radiation damping 10 1.3 Numerical simulation of Fluid-Structure Interactions 14 1.4 Finite element and boundary element methods 24 References 25 2 Structure Finite Elements 27 2.1 Vibrations of an elastic structure 28 2.1.1 Modelling assumptions 28 2.1.2 Equations of motion 36 2.2 Finite Element Method: practical implementation 38 2.2.1 Weighted integral formulation 38 2.2.2 Finite elements 40 2.2.3 Elementary matrices 43 2.2.4 Mass and stiffness matrices 44 2.2.5 Calculating and assembling matrices 49 2.2.6 Modal analysis 54 2.3 Example: bending modes 57 2.3.1 Bending motion of a straight elastic beam 57 2.3.2 Bernoulli beam elements 58 2.3.3 Bending modes 62 2.4 Example : coupled bending/membrane modes 66 2.4.1 Bending and membrane motion of a circular elastic ring 66 2.4.2 Fourier component representation: 0D element 67 2.4.3 Bending/membrane modes 69 References 79 3 Fluid Finite Elements 81 3.1 Fluid flow equations 82 3.2 Compressibility waves 91 3.2.1 Wave equation 91 3.2.2 Boundary conditions 95 3.3 Finite element method 103 3.3.1 Pressure-based formulation 103 3.3.2 Displacement-based formulations 108 3.3.3 Finite element matrices 111 3.4 Boundary element method 113 3.4.1 Green function and Green's integral theorem 113 3.4.2 Interior and exterior problems 114 3.4.3 Direct and indirect boundary element method 116 3.4.4 Boundary element matrices 120 3.5 Example: Sloshing modes 121 3.5.1 Circular reservoir with fluid free surface 121 3.5.2 2D axi-symmetric elements with gravity 124 3.5.3 Sloshing modes 126 3.6 Example: Acoustic modes in an open reservoir 128 3.6.1 Cylindrical acoustic opened cavity 128 3.6.2 2D axi-symmetric elements with compressibility 129 3.6.3 Acoustic modes 130 3.7 Example: Acoustic modes in a closed reservoir 132 3.7.1 Rectangular acoustic closed cavity 132 3.7.2 2D fluid elements with compressibility 134 3.7.3 Acoustic modes 134 3.8 Example: Acoustic radiation in infinite fluid 135 3.8.1 Pulsating ring in infinite acoustic fluid 135 3.8.2 1D axi-symmetric element with radiation condition 137 3.8.3 1D boundary elements 138 3.8.4 Acoustic radiation 141 References 146 4 Inertial Coupling 149 4.1 Mathematical modelling 150 4.2 Added mass matrix 152 4.2.1 Coupling matrix 152 4.2.2 Added mass matrix 154 4.2.3 Inertial effect 156 4.3 Modelling inertial coupling for complex systems: example of tube bundle 163 4.3.1 Analytical models for added mass 164 4.3.2 'Term-to-term' computation of the added mass matrix 164 4.3.3 A homogenisation technique 167 4.4 Examples : inertial effect in bounded domain 178 4.4.1 Analytical calculation of the added mass matrix 178 4.4.2 Numerical computation of the added mass matrix 185 4.5 Example: inertial effect in unbounded domain 191 4.5.1 Elastic ring immersed in a fluid 191 4.5.2 Finite element coupling with infinite element 194 References 200 5 Fluid-Structure Coupling 203 5.1 Modelling assumption 204 5.2 Interior problems: vibro-acoustic and hydro-elastic coupling 205 5.2.1 Non-symmetric formulation 205 5.2.2 Symmetric formulation 208 5.3 Exterior problem: vibro-acoustic 217 5.4 Example: vibro-acoustic coupling and hydro-elastic sloshing 223 5.5 Example: Acoustic damping 231 5.5.1 Analytical modelling 231 5.5.2 Numerical computation 235 References 245 6 Structural Dynamics with Fluid-Structure Interaction 247 6.1 Introduction 248 6.2 Time-domain analysis 250 6.2.1 Direct methods 250 6.2.2 Modal methods 261 6.3 Frequency-domain analysis 271 6.3.1 Direct and modal methods 271 6.3.2 Computation of the projection basis 273 6.4 Example: time-domain analysis 278 6.4.1 Accelerated cantilever beam with fluid coupling 278 6.4.2 System and excitation spectra 281 6.4.3 Seismic response: Direct and modal methods 283 6.5 Example: frequency-domain analysis 289 6.5.1 Acoustic radiation of a damped structure immersed in a fluid 289 6.5.2 Frequency response: Direct and modal methods 293 References 304 Index 307. , Fluid-Structure Interaction 1 1.1 , A wide variety of problems 2 1.2 , Analytical modelling of Fluid-Structure Interactions 3 1.2.1 , Potential flow. Inertial coupling 4 1.2.2 , Viscous flow. Viscous damping 8 1.2.3 , Compressible flow. Radiation damping 10 1.3 , Numerical simulation of Fluid-Structure Interactions 14 1.4 , Finite element and boundary element methods 24 References 25 2 , Structure Finite Elements 27 2.1 , Vibrations of an elastic structure 28 2.1.1 , Modelling assumptions 28 2.1.2 , Equations of motion 36 2.2 , Finite Element Method: practical implementation 38 2.2.1 , Weighted integral formulation 38 2.2.2 , Finite elements 40 2.2.3 , Elementary matrices 43 2.2.4 , Mass and stiffness matrices 44 2.2.5 , Calculating and assembling matrices 49 2.2.6 , Modal analysis 54 2.3 , Example: bending modes 57 2.3.1 , Bending motion of a straight elastic beam 57 2.3.2 , Bernoulli beam elements 58 2.3.3 , Bending modes 62 2.4 , Example : coupled bending/membrane modes 66 2.4.1 , Bending and membrane motion of a circular elastic ring 66 2.4.2 , Fourier component representation: 0D element 67 2.4.3 , Bending/membrane modes 69 References 79 3 , Fluid Finite Elements 81 3.1 , Fluid flow equations 82 3.2 Compressibility waves 91 3.2.1Wave equation 91 3.2.2 , Boundary conditions 95 3.3 Finite element method 103 3.3.1 , Pressure-based formulation 103 3.3.2 , Displacement-based formulations 108 3.3.3 , Finite element matrices 111 3.4 , Boundary element method 113 3.4.1 , Green function and Green's integral theorem 113 3.4.2 , Interior and exterior problems 114 3.4.3 , Direct and indirect boundary element method 116 3.4.4 , Boundary element matrices 120 3.5 , Example: Sloshing modes 121 3.5.1 , Circular reservoir with fluid free surface 121 3.5.2 , 2D axi-symmetric elements with gravity 124 3.5.3 Sloshing modes 126 3.6 , Example: Acoustic modes in an open reservoir 128 3.6.1 , Cylindrical acoustic opened cavity 128 3.6.2 , 2D axi-symmetric elements with compressibility 129 3.6.3 , Acoustic modes 130 3.7 , Example: Acoustic modes in a closed reservoir 132 3.7.1 , Rectangular acoustic closed cavity 132 3.7.2 , 2D fluid elements with compressibility 134 3.7.3 , Acoustic modes 134 3.8 , Example: Acoustic radiation in infinite fluid 135 3.8.1 , Pulsating ring in infinite acoustic fluid 135 3.8.2 , 1D axi-symmetric element with radiation condition 137 3.8.3 , 1D boundary elements 138 3.8.4 , Acoustic radiation 141 References 146 4 , Inertial Coupling 149 4.1 , Mathematical modelling 150 4.2 , Added mass matrix 152 4.2.1 , Coupling matrix 152 4.2.2 , Added mass matrix 154 4.2.3 , Inertial effect 156 4.3 , Modelling inertial coupling for complex systems: example of tube bundle 163 4.3.1 , Analytical models for added mass 164 4.3.2 , 'Term-to-term' computation of the added mass matrix 164 4.3.3 , A homogenisation technique 167 4.4 , Examples : inertial effect in bounded domain 178 4.4.1 , Analytical calculation of the added mass matrix 178 4.4.2 , Numerical computation of the added mass matrix 185 4.5 , Example: inertial effect in unbounded domain 191 4.5.1 , Elastic ring immersed in a fluid 191 4.5.2 , Finite element coupling with infinite element 194 References 200 5 Fluid-Structure Coupling 203 5.1 , Modelling assumption 204 5.2 , Interior problems: vibro-acoustic and hydro-elastic coupling 205 5.2.1 , Non-symmetric formulation 205 5.2.2 , Symmetric formulation 208 5.3 , Exterior problem: vibro-acoustic 217 5.4 , Example: vibro-acoustic coupling and hydro-elastic sloshing 223 5.5 , Example: Acoustic damping 231 5.5.1 , Analytical modelling 231 5.5.2 , Numerical computation 235 References 245 6 , Structural Dynamics with Fluid-Structure Interaction 247 6.1 , Introduction 248 6.2 , Time-domain analysis 250 6.2.1 , Direct methods 250 6.2.2 , Modal methods 261 6.3 , Frequency-domain analysis 271 6.3.1 , Direct and modal methods 271 6.3.2 , Computation of the projection basis 273 6.4 , Example: time-domain analysis 278 6.4.1 , Accelerated cantilever beam with fluid coupling 278 6.4.2 , System and excitation spectra 281 6.4.3 , Seismic response: Direct and modal methods 283 6.5 , Example: frequency-domain analysis 289 6.5.1 , Acoustic radiation of a damped structure immersed in a fluid 289 6.5.2 , Frequency response: Direct and modal methods 293 References 304 Index 307.
    Additional Edition: Print version: Sigrist, Jean-François. Fluid-structure interaction. Chichester, West Sussex, United Kingdom : Wiley, 2015 ISBN 9781119952275
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    UID:
    almafu_9961054836202883
    Format: 1 online resource (400 pages)
    ISBN: 1394188226 , 9781394188222 , 9781394188208 , 139418820X
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Foreword: Numerical Simulation: A Strategic Challenge for Our Industrial Sovereignty -- Preface: Fluid-Structure Interactions in Naval Engineering -- Acknowledgments -- Chapter 1. A Brief History of Naval Hydrodynamics -- 1.1. The emergence of a new science -- 1.2. Perfecting the theory -- 1.2.1. Fluids, viscosity and turbulence -- 1.2.2. Potential theories -- 1.2.3. Waves -- 1.3. Ship theory -- 1.3.1. Stability -- 1.3.2. Resistance to forward motion -- 1.3.3. Roll, pitch and seakeeping -- 1.3.4. Propeller and cavitation -- 1.4. The numerical revolution -- 1.5. References -- Chapter 2. Numerical Methods for Vibro-acoustics of Ships in the "Low frequency" Range -- 2.1. The acoustic signature of maritime platforms -- 2.2. Vibro-acoustic models -- 2.2.1. Vibro-acoustics without dissipative effects -- 2.2.2. Dissipation of energy in a fluid -- 2.2.3. Dissipation of energy in materials -- 2.3. Calculating the frequency response -- 2.3.1. Numerical model, vibro-acoustic equation -- 2.3.2. Direct and modal methods -- 2.4. Improving the predictive character of simulations -- 2.4.1. The medium- and high-frequency domains -- 2.4.2. Uncertainty propagation and parametric dependency -- 2.5. References -- Chapter 3. Hybrid Methods for the Vibro-acoustic Response of Submerged Structures -- 3.1. Noise and vibration of a submerged structure -- 3.1.1. Why vibro-acoustics? -- 3.1.2. From the real-world problem to the physical model -- 3.2. Solving the vibro-acoustic problem -- 3.2.1. Substructuring approach -- 3.2.2. Point admittance method -- 3.2.3. Condensed transfer function method -- 3.2.4. Examples of condensation functions -- 3.2.5. Spectral theory of cylindrical shells -- 3.2.6. FEM calculation for internal structures. , 3.3. Physical analysis of the vibro-acoustic behavior of a submerged cylindrical shell -- 3.3.1. The influence of heavy fluid -- 3.3.2. Vibration behavior of the cylindrical shell -- 3.3.3. The influence of stiffeners -- 3.3.4. Influence of non-axisymmetric internal structures -- 3.4. Conclusion -- 3.5. References -- Chapter 4. "Advanced" Methods for the Vibro-acoustic Response of Naval Structures -- 4.1. On reducing computing time -- 4.2. Parametric reduced-order models in the harmonic regime -- 4.2.1. Bibliographical elements. -- 4.2.2. Standard construction of the parametric reduced-order model -- 4.2.3. Constructing a goal-oriented parametric reduced-order model -- 4.3. Parametric reduced-order models in the time domain -- 4.3.1. Motivation -- 4.3.2. On the stability of full vibro-acoustic models -- 4.3.3. Construction of stable reduced-order models -- 4.3.4. Offline construction of the reduced-basis -- 4.3.5. Illustration of the temporal approach -- 4.4. Conclusion -- 4.5. References -- Chapter 5. Calculating Hydrodynamic Flows: LBM and POD Methods -- 5.1. Model reduction -- 5.2. Proper orthogonal decomposition -- 5.2.1. Calculation of the reduced basis POD -- 5.2.2. Using POD in fluid-structure interaction -- 5.2.3. Sensitivity to parameters and interpolation of POD bases -- 5.3. Lattice Boltzmann method -- 5.3.1. History -- 5.3.2. MRT/BGK -- 5.3.3. Real parameters/LBM parameters -- 5.4. LBM and FSI -- 5.4.1. Boundary conditions in the LBM -- 5.4.2. Immersed boundary method -- 5.5. Conclusion -- 5.6. References -- Chapter 6. Dynamic Behavior of Tube Bundles with Fluid-Structure Interaction -- 6.1. Introduction -- 6.1.1. Tube bundles in the nuclear industry -- 6.1.2. Tube bundles, industrial problems -- 6.1.3. Modeling FSI in exchangers -- 6.2. Physical models and equations -- 6.2.1. Fluid-structure interaction with Euler equations. , 6.2.2. Numerical methods for Euler equations with FSI -- 6.2.3. Homogenization in the case of tube bundles -- 6.2.4. Numerical methods for homogenization -- 6.2.5. Euler equations, Rayleigh damping -- 6.2.6. Homogenization, Rayleigh damping -- 6.2.7. Implementing the homogenization method -- 6.3. Validation and illustration of the homogenization method -- 6.3.1. Vibrational eigenmodes -- 6.3.2. Rayleigh damping: direct and homogenization methods -- 6.4. Homogenization methods for Navier-Stokes equations -- 6.5. Applications -- 6.5.1. Dynamic behavior of RNR-Na cores -- 6.5.2. Onboard steam generator -- 6.6. Conclusion -- 6.7. References -- Chapter 7. Calculating Turbulent Pressure Spectra -- 7.1. Vibrations caused by turbulent flow -- 7.2. Characteristics of the wall pressure spectrum -- 7.2.1. Turbulent boundary layer without a pressure gradient -- 7.2.2. Flow with a pressure gradient -- 7.3. Empirical models -- 7.3.1. Corcos model -- 7.3.2. Chase models -- 7.3.3. Smol'yakov model -- 7.3.4. Goody's model -- 7.3.5. Rozenberg model -- 7.3.6. Model comparison -- 7.4. Solving the Poisson equation for wall pressure fluctuations -- 7.4.1. Formulations for the TMS part of the wall pressure -- 7.4.2. Formulations for the TMS and TT parts of the wall pressure -- 7.5. Conclusion -- 7.6. References -- Chapter 8. Calculating Fluid-Structure Interactions Using Co-simulation Techniques -- 8.1. Introduction -- 8.2. The physics of fluid-structure interaction -- 8.2.1. Dimensionless numbers for the fluid flow -- 8.2.2. Dimensionless numbers for the motion of structures -- 8.2.3. Dimensionless numbers linked to fluid-structure coupling -- 8.2.4. Additional dimensionless numbers and the generic effects of a fluid on a structure -- 8.2.5. Summary of dimensionless numbers and fluid-structure coupling intensity. , 8.3. Mathematical formulation of the fluid-structure interaction -- 8.3.1. Mathematical formulation of the fluid problem -- 8.3.2. Mathematical formulation of the structural problem -- 8.3.3. Mathematical formulation of interface coupling conditions -- 8.4. Numerical methods in the dynamics of fluids and structures -- 8.4.1. Numerical methods in the dynamics of fluids -- 8.4.2. Numerical methods in structural dynamics -- 8.4.3. Arbitrary Lagrange-Euler (ALE) formulation and moving meshes -- 8.5. Numerical solution of the fluid-structure interaction -- 8.5.1. Software strategy -- 8.5.2. Time coupling methods in the case of partitioning approaches -- 8.5.3. Methods of space coupling -- 8.5.4. The added mass effect -- 8.6. Examples of applications to naval hydrodynamics -- 8.6.1. Foils in composite materials -- 8.6.2. Hydrodynamics of hulls -- 8.7. Conclusion: Which method for which physics? -- 8.8. References -- Chapter 9. The Seakeeping of Ships -- 9.1. Why predict ships' seakeeping ability? -- 9.1.1. Guaranteeing structural reliability -- 9.1.2. Guaranteeing a ship's safety at sea -- 9.1.3. Predicting operability domains -- 9.1.4. Improving operability -- 9.1.5. Getting to know the environment and how the ship disrupts it -- 9.1.6. The particular case of multibodies -- 9.1.7. Knowing average or low-frequency forces resulting from swell -- 9.2. Waves -- 9.2.1. Origin, nature and description of waves -- 9.2.2. Monochromatic swell -- 9.2.3. Irregular swell -- 9.2.4. Complete nonlinear wave modeling -- 9.2.5. Considering a ship's forward speed -- 9.3. The hydromechanical linear frequency solution -- 9.3.1. Hypotheses and general formulation -- 9.3.2. Response on regular swell -- 9.3.3. Response on irregular swell -- 9.4. Nonlinear time solution based on force models -- 9.4.1. Principles of the method -- 9.4.2. Results. , 9.4.3. Tools: uses and limitations -- 9.5. Complete solution of the Navier-Stokes equations -- 9.5.1. Method -- 9.5.2. Applications to the problem of seakeeping -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Modeling the Effects of Underwater Explosions on Submerged Structures -- 10.1. Underwater explosions -- 10.1.1. Characterizing the threat -- 10.1.2. Calculating the flow -- 10.1.3. Semi-analytical models for the response of submerged structures -- 10.2. Semi-analytical models for the motion of a rigid hull -- 10.2.1. Local motion of a rigid hull with or without equipment -- 10.2.2. Overall motion of a rigid hull with or without equipment -- 10.3. Semi-analytical models of the motion of a deformable hull -- 10.3.1. Shock signal on a deformable hull alone -- 10.3.2. Correction of the rigid body motion -- 10.3.3. Device rigidly mounted on the hull -- 10.3.4. Simplified representation of hull stiffeners -- 10.4. Notes on implementing models -- 10.5. Conclusion -- 10.6. References -- Chapter 11. Resistance of Composite Structures Under Extreme Hydrodynamic Loads -- 11.1. The behavior of composite materials -- 11.1.1. Orthotropic linear elastic behavior -- 11.1.2. Non-elastic behavior -- 11.1.3. Strain rate dependency -- 11.2. Underwater explosions -- 11.2.1. Categorizing phenomena -- 11.2.2. Analytical formulations and simple experiments -- 11.2.3. Numerical methods -- 11.3. Slamming: phenomenon and formulation -- 11.4. Conclusion -- 11.5. References -- List of Authors -- Index -- EULA.
    Additional Edition: Print version: Leblond, Cedric Fluid-Structure Interaction Newark : John Wiley & Sons, Incorporated,c2022 ISBN 9781789450781
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 3
    Online Resource
    Online Resource
    Hoboken, NJ :John Wiley & Sons, Incorporated,
    UID:
    almahu_9949616041702882
    Format: 1 online resource (375 pages)
    ISBN: 9781394188222 , 1394188226 , 9781394188208 , 139418820X , 1789450780 , 9781789450781
    Note: Cover -- Title Page -- Copyright Page -- Contents -- Foreword: Numerical Simulation: A Strategic Challenge for Our Industrial Sovereignty -- Preface: Fluid-Structure Interactions in Naval Engineering -- Acknowledgments -- Chapter 1. A Brief History of Naval Hydrodynamics -- 1.1. The emergence of a new science -- 1.2. Perfecting the theory -- 1.2.1. Fluids, viscosity and turbulence -- 1.2.2. Potential theories -- 1.2.3. Waves -- 1.3. Ship theory -- 1.3.1. Stability -- 1.3.2. Resistance to forward motion -- 1.3.3. Roll, pitch and seakeeping -- 1.3.4. Propeller and cavitation -- 1.4. The numerical revolution -- 1.5. References -- Chapter 2. Numerical Methods for Vibro-acoustics of Ships in the "Low frequency" Range -- 2.1. The acoustic signature of maritime platforms -- 2.2. Vibro-acoustic models -- 2.2.1. Vibro-acoustics without dissipative effects -- 2.2.2. Dissipation of energy in a fluid -- 2.2.3. Dissipation of energy in materials -- 2.3. Calculating the frequency response -- 2.3.1. Numerical model, vibro-acoustic equation -- 2.3.2. Direct and modal methods -- 2.4. Improving the predictive character of simulations -- 2.4.1. The medium- and high-frequency domains -- 2.4.2. Uncertainty propagation and parametric dependency -- 2.5. References -- Chapter 3. Hybrid Methods for the Vibro-acoustic Response of Submerged Structures -- 3.1. Noise and vibration of a submerged structure -- 3.1.1. Why vibro-acoustics? -- 3.1.2. From the real-world problem to the physical model -- 3.2. Solving the vibro-acoustic problem -- 3.2.1. Substructuring approach -- 3.2.2. Point admittance method -- 3.2.3. Condensed transfer function method -- 3.2.4. Examples of condensation functions -- 3.2.5. Spectral theory of cylindrical shells -- 3.2.6. FEM calculation for internal structures. , 3.3. Physical analysis of the vibro-acoustic behavior of a submerged cylindrical shell -- 3.3.1. The influence of heavy fluid -- 3.3.2. Vibration behavior of the cylindrical shell -- 3.3.3. The influence of stiffeners -- 3.3.4. Influence of non-axisymmetric internal structures -- 3.4. Conclusion -- 3.5. References -- Chapter 4. "Advanced" Methods for the Vibro-acoustic Response of Naval Structures -- 4.1. On reducing computing time -- 4.2. Parametric reduced-order models in the harmonic regime -- 4.2.1. Bibliographical elements. -- 4.2.2. Standard construction of the parametric reduced-order model -- 4.2.3. Constructing a goal-oriented parametric reduced-order model -- 4.3. Parametric reduced-order models in the time domain -- 4.3.1. Motivation -- 4.3.2. On the stability of full vibro-acoustic models -- 4.3.3. Construction of stable reduced-order models -- 4.3.4. Offline construction of the reduced-basis -- 4.3.5. Illustration of the temporal approach -- 4.4. Conclusion -- 4.5. References -- Chapter 5. Calculating Hydrodynamic Flows: LBM and POD Methods -- 5.1. Model reduction -- 5.2. Proper orthogonal decomposition -- 5.2.1. Calculation of the reduced basis POD -- 5.2.2. Using POD in fluid-structure interaction -- 5.2.3. Sensitivity to parameters and interpolation of POD bases -- 5.3. Lattice Boltzmann method -- 5.3.1. History -- 5.3.2. MRT/BGK -- 5.3.3. Real parameters/LBM parameters -- 5.4. LBM and FSI -- 5.4.1. Boundary conditions in the LBM -- 5.4.2. Immersed boundary method -- 5.5. Conclusion -- 5.6. References -- Chapter 6. Dynamic Behavior of Tube Bundles with Fluid-Structure Interaction -- 6.1. Introduction -- 6.1.1. Tube bundles in the nuclear industry -- 6.1.2. Tube bundles, industrial problems -- 6.1.3. Modeling FSI in exchangers -- 6.2. Physical models and equations -- 6.2.1. Fluid-structure interaction with Euler equations. , 6.2.2. Numerical methods for Euler equations with FSI -- 6.2.3. Homogenization in the case of tube bundles -- 6.2.4. Numerical methods for homogenization -- 6.2.5. Euler equations, Rayleigh damping -- 6.2.6. Homogenization, Rayleigh damping -- 6.2.7. Implementing the homogenization method -- 6.3. Validation and illustration of the homogenization method -- 6.3.1. Vibrational eigenmodes -- 6.3.2. Rayleigh damping: direct and homogenization methods -- 6.4. Homogenization methods for Navier-Stokes equations -- 6.5. Applications -- 6.5.1. Dynamic behavior of RNR-Na cores -- 6.5.2. Onboard steam generator -- 6.6. Conclusion -- 6.7. References -- Chapter 7. Calculating Turbulent Pressure Spectra -- 7.1. Vibrations caused by turbulent flow -- 7.2. Characteristics of the wall pressure spectrum -- 7.2.1. Turbulent boundary layer without a pressure gradient -- 7.2.2. Flow with a pressure gradient -- 7.3. Empirical models -- 7.3.1. Corcos model -- 7.3.2. Chase models -- 7.3.3. Smol'yakov model -- 7.3.4. Goody's model -- 7.3.5. Rozenberg model -- 7.3.6. Model comparison -- 7.4. Solving the Poisson equation for wall pressure fluctuations -- 7.4.1. Formulations for the TMS part of the wall pressure -- 7.4.2. Formulations for the TMS and TT parts of the wall pressure -- 7.5. Conclusion -- 7.6. References -- Chapter 8. Calculating Fluid-Structure Interactions Using Co-simulation Techniques -- 8.1. Introduction -- 8.2. The physics of fluid-structure interaction -- 8.2.1. Dimensionless numbers for the fluid flow -- 8.2.2. Dimensionless numbers for the motion of structures -- 8.2.3. Dimensionless numbers linked to fluid-structure coupling -- 8.2.4. Additional dimensionless numbers and the generic effects of a fluid on a structure -- 8.2.5. Summary of dimensionless numbers and fluid-structure coupling intensity. , 8.3. Mathematical formulation of the fluid-structure interaction -- 8.3.1. Mathematical formulation of the fluid problem -- 8.3.2. Mathematical formulation of the structural problem -- 8.3.3. Mathematical formulation of interface coupling conditions -- 8.4. Numerical methods in the dynamics of fluids and structures -- 8.4.1. Numerical methods in the dynamics of fluids -- 8.4.2. Numerical methods in structural dynamics -- 8.4.3. Arbitrary Lagrange-Euler (ALE) formulation and moving meshes -- 8.5. Numerical solution of the fluid-structure interaction -- 8.5.1. Software strategy -- 8.5.2. Time coupling methods in the case of partitioning approaches -- 8.5.3. Methods of space coupling -- 8.5.4. The added mass effect -- 8.6. Examples of applications to naval hydrodynamics -- 8.6.1. Foils in composite materials -- 8.6.2. Hydrodynamics of hulls -- 8.7. Conclusion: Which method for which physics? -- 8.8. References -- Chapter 9. The Seakeeping of Ships -- 9.1. Why predict ships' seakeeping ability? -- 9.1.1. Guaranteeing structural reliability -- 9.1.2. Guaranteeing a ship's safety at sea -- 9.1.3. Predicting operability domains -- 9.1.4. Improving operability -- 9.1.5. Getting to know the environment and how the ship disrupts it -- 9.1.6. The particular case of multibodies -- 9.1.7. Knowing average or low-frequency forces resulting from swell -- 9.2. Waves -- 9.2.1. Origin, nature and description of waves -- 9.2.2. Monochromatic swell -- 9.2.3. Irregular swell -- 9.2.4. Complete nonlinear wave modeling -- 9.2.5. Considering a ship's forward speed -- 9.3. The hydromechanical linear frequency solution -- 9.3.1. Hypotheses and general formulation -- 9.3.2. Response on regular swell -- 9.3.3. Response on irregular swell -- 9.4. Nonlinear time solution based on force models -- 9.4.1. Principles of the method -- 9.4.2. Results. , 9.4.3. Tools: uses and limitations -- 9.5. Complete solution of the Navier-Stokes equations -- 9.5.1. Method -- 9.5.2. Applications to the problem of seakeeping -- 9.6. Conclusion -- 9.7. References -- Chapter 10. Modeling the Effects of Underwater Explosions on Submerged Structures -- 10.1. Underwater explosions -- 10.1.1. Characterizing the threat -- 10.1.2. Calculating the flow -- 10.1.3. Semi-analytical models for the response of submerged structures -- 10.2. Semi-analytical models for the motion of a rigid hull -- 10.2.1. Local motion of a rigid hull with or without equipment -- 10.2.2. Overall motion of a rigid hull with or without equipment -- 10.3. Semi-analytical models of the motion of a deformable hull -- 10.3.1. Shock signal on a deformable hull alone -- 10.3.2. Correction of the rigid body motion -- 10.3.3. Device rigidly mounted on the hull -- 10.3.4. Simplified representation of hull stiffeners -- 10.4. Notes on implementing models -- 10.5. Conclusion -- 10.6. References -- Chapter 11. Resistance of Composite Structures Under Extreme Hydrodynamic Loads -- 11.1. The behavior of composite materials -- 11.1.1. Orthotropic linear elastic behavior -- 11.1.2. Non-elastic behavior -- 11.1.3. Strain rate dependency -- 11.2. Underwater explosions -- 11.2.1. Categorizing phenomena -- 11.2.2. Analytical formulations and simple experiments -- 11.2.3. Numerical methods -- 11.3. Slamming: phenomenon and formulation -- 11.4. Conclusion -- 11.5. References -- List of Authors -- Index -- EULA.
    Additional Edition: Print version: Leblond, Cedric Fluid-Structure Interaction Newark : John Wiley & Sons, Incorporated,c2022 ISBN 9781789450781
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9781349188222?
Did you mean 9781394182282?
Did you mean 9781394188208?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages