Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Princeton, N.J. : Princeton University Press
    UID:
    b3kat_BV042522264
    Umfang: 1 Online-Ressource (384 S.)
    ISBN: 9781400826179
    Serie: Annals of Mathematics Studies number 156
    Anmerkung: Main description: This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank 1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 0-691-11898-1
    Sprache: Englisch
    Fachgebiete: Mathematik
    RVK:
    RVK:
    RVK:
    Schlagwort(e): Radon-Transformation ; Graßmann-Mannigfaltigkeit
    URL: Volltext  (URL des Erstveröffentlichers)
    Mehr zum Autor: Gasqui, Jacques
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Princeton, N.J. :Princeton University Press,
    UID:
    almafu_9958091361502883
    Umfang: 1 online resource (385 p.)
    Ausgabe: Course Book
    ISBN: 9786612158988 , 9781282158986 , 1282158988 , 9781400826179 , 1400826179
    Serie: Annals of mathematics studies ; no. 156
    Inhalt: This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank ›1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
    Anmerkung: Description based upon print version of record. , Frontmatter -- , TABLE OF CONTENTS -- , INTRODUCTION -- , Chapter I. Symmetric Spaces and Einstein Manifolds -- , Chapter II. Radon Transforms on Symmetric Spaces -- , Chapter III. Symmetric Spaces of Rank One -- , Chapter IV. The Real Grassmannians -- , Chapter V. The Complex Quadric -- , Chapter VI. The Rigidity of the Complex Quadric -- , Chapter VII. The Rigidity of the Real Grassmannians -- , Chapter VIII. The Complex Grassmannians -- , Chapter IX. The Rigidity of the Complex Grassmannians -- , Chapter X. Products of Symmetric Spaces -- , References -- , Index , Issued also in print. , English
    Weitere Ausg.: ISBN 9780691118987
    Weitere Ausg.: ISBN 0691118981
    Weitere Ausg.: ISBN 9780691118994
    Weitere Ausg.: ISBN 069111899X
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Online-Ressource
    Online-Ressource
    Princeton, N.J. :Princeton University Press,
    UID:
    almafu_9958352517602883
    Umfang: 1 online resource (384 pages) : , illustrations.
    Ausgabe: Course Book.
    Ausgabe: Electronic reproduction. Princeton, N.J. : Princeton University Press, 2004. Mode of access: World Wide Web.
    Ausgabe: System requirements: Web browser.
    Ausgabe: Access may be restricted to users at subscribing institutions.
    ISBN: 9781400826179
    Serie: Annals of Mathematics Studies, 156
    Inhalt: This book provides the first unified examination of the relationship between Radon transforms on symmetric spaces of compact type and the infinitesimal versions of two fundamental rigidity problems in Riemannian geometry. Its primary focus is the spectral rigidity problem: Can the metric of a given Riemannian symmetric space of compact type be characterized by means of the spectrum of its Laplacian? It also addresses a question rooted in the Blaschke problem: Is a Riemannian metric on a projective space whose geodesics are all closed and of the same length isometric to the canonical metric? The authors comprehensively treat the results concerning Radon transforms and the infinitesimal versions of these two problems. Their main result implies that most Grassmannians are spectrally rigid to the first order. This is particularly important, for there are still few isospectrality results for positively curved spaces and these are the first such results for symmetric spaces of compact type of rank 〉1. The authors exploit the theory of overdetermined partial differential equations and harmonic analysis on symmetric spaces to provide criteria for infinitesimal rigidity that apply to a large class of spaces. A substantial amount of basic material about Riemannian geometry, symmetric spaces, and Radon transforms is included in a clear and elegant presentation that will be useful to researchers and advanced students in differential geometry.
    Anmerkung: Frontmatter -- , TABLE OF CONTENTS -- , INTRODUCTION -- , Chapter I. Symmetric Spaces and Einstein Manifolds -- , Chapter II. Radon Transforms on Symmetric Spaces -- , Chapter III. Symmetric Spaces of Rank One -- , Chapter IV. The Real Grassmannians -- , Chapter V. The Complex Quadric -- , Chapter VI. The Rigidity of the Complex Quadric -- , Chapter VII. The Rigidity of the Real Grassmannians -- , Chapter VIII. The Complex Grassmannians -- , Chapter IX. The Rigidity of the Complex Grassmannians -- , Chapter X. Products of Symmetric Spaces -- , References -- , Index. , In English.
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781400821679?
Meinten Sie 9781400820979?
Meinten Sie 9781000824179?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz