Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Type of Medium
Language
Region
Library
Years
Person/Organisation
  • 1
    Online Resource
    Online Resource
    Princeton, NJ :Princeton University Press,
    UID:
    edocfu_9958352985502883
    Format: 1 online resource (590 p.)
    Edition: Course Book
    ISBN: 9781400862849
    Series Statement: Princeton Legacy Library ; 210
    Content: CMOS chips are becoming increasingly important in computer circuitry. They have been widely used during the past decade, and they will continue to grow in popularity in those application areas that demand high performance. Challenging the prevailing opinion that circuit simulation can reveal all problems in CMOS circuits, Masakazu Shoji maintains that simulation cannot completely remove the often costly errors that occur in circuit design. To address the failure modes of these circuits more fully, he presents a new approach to CMOS circuit design based on his systematizing of circuit design error and his unique theory of CMOS digital circuit operation. In analyzing CMOS digital circuits, the author focuses not on effects originating from the characteristics of the device (MOSFET) but on those arising from their connection. This emphasis allows him to formulate a powerful but ultimately simple theory explaining the effects of connectivity by using a concept of the states of the circuits, called microstates. Shoji introduces microstate sequence diagrams that describe the state changes (or the circuit connectivity changes), and he uses his microstate theory to analyze many of the conventional CMOS digital circuits. These analyses are practically all in closed-form, and they provide easy physical interpretation of the circuit's working mechanisms, the parametric dependence of performance, and the circuit's failure modes.Originally published in 1992.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
    Note: Frontmatter -- , Contents -- , Preface and Acknowledgments -- , List of Mathematical Symbols -- , Chapter 1. Physics of CMOS Integrated Circuits -- , Chapter 2. Method of Analysis of CMOS Circuit Failures -- , Chapter 3. Circuit Failures Due to Anomalous Signal Flow -- , Chapter 4. Noise Phenomena in Digital Circuits -- , Chapter 5. Circuit Failures Due to Timing Problems -- , Chapter 6. Essential Uncertainty in CMOS Circuits -- , Chapter 7. Design Failures of CMOS Systems -- , Index , In English.
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    Princeton, New Jersey :Princeton University Press,
    UID:
    edocfu_9959228298702883
    Format: 1 online resource (589 pages) : , illustrations.
    Edition: Course Book
    ISBN: 0-691-63245-6 , 0-691-60301-4 , 1-4008-6284-1
    Series Statement: Princeton legacy library
    Content: CMOS chips are becoming increasingly important in computer circuitry. They have been widely used during the past decade, and they will continue to grow in popularity in those application areas that demand high performance. Challenging the prevailing opinion that circuit simulation can reveal all problems in CMOS circuits, Masakazu Shoji maintains that simulation cannot completely remove the often costly errors that occur in circuit design. To address the failure modes of these circuits more fully, he presents a new approach to CMOS circuit design based on his systematizing of circuit design error and his unique theory of CMOS digital circuit operation. In analyzing CMOS digital circuits, the author focuses not on effects originating from the characteristics of the device (MOSFET) but on those arising from their connection. This emphasis allows him to formulate a powerful but ultimately simple theory explaining the effects of connectivity by using a concept of the states of the circuits, called microstates. Shoji introduces microstate sequence diagrams that describe the state changes (or the circuit connectivity changes), and he uses his microstate theory to analyze many of the conventional CMOS digital circuits. These analyses are practically all in closed-form, and they provide easy physical interpretation of the circuit's working mechanisms, the parametric dependence of performance, and the circuit's failure modes.Originally published in 1992.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
    Note: Bibliographic Level Mode of Issuance: Monograph , Frontmatter -- , Contents -- , Preface and Acknowledgments -- , List of Mathematical Symbols -- , Chapter 1. Physics of CMOS Integrated Circuits -- , Chapter 2. Method of Analysis of CMOS Circuit Failures -- , Chapter 3. Circuit Failures Due to Anomalous Signal Flow -- , Chapter 4. Noise Phenomena in Digital Circuits -- , Chapter 5. Circuit Failures Due to Timing Problems -- , Chapter 6. Essential Uncertainty in CMOS Circuits -- , Chapter 7. Design Failures of CMOS Systems -- , Index , Issued also in print. , English
    Additional Edition: ISBN 0-691-08763-6
    Additional Edition: ISBN 1-306-98566-8
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9781400862894?
Did you mean 9781400820849?
Did you mean 9781400826889?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages