Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Fachgebiete(RVK)
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Dordrecht : Kluwer Academic Publishers
    UID:
    gbv_524933014
    Umfang: Online-Ressource , v.: digital
    Ausgabe: Online-Ausg. Springer-11651
    Ausgabe: Springer eBook Collection. Physics and Astronomy
    ISBN: 9780306483868
    Serie: Fluid Mechanics and Its Applications 64
    Inhalt: Introductory Comments and Summary -- Introductory Comments and Summary -- Setting the Scene -- Newtonian Fluid Flow: Equations and Conditions -- Some Basic Aspects of Asymptotic Analysis and Modelling -- Useful Limiting Forms of the NS-F Equations -- Main Astmptotic Models -- The Navier-Fourier Viscous Incompressible Model -- The Inviscid/Nonviscous Euler Model and Some Hydro-Aerodynamics Problems -- Boundary-Layer Models for High-Reynolds Numbers -- Some Models of Nonlinear Acoustics -- Low-Reynolds Numbers Asymptotics -- Three Specific Asymptotic Models -- Asymptotic Modelling of Thermal Convection and Interfacial Phenomena -- Meteo-Fluid-Dynamics Models -- Singular Coupling and the Triple-Deck Model.
    Inhalt: for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful.
    Weitere Ausg.: ISBN 9781402004322
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9789048159390
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781402004322
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9789401742757
    Sprache: Englisch
    Schlagwort(e): Strömung ; Asymptotische Methode ; Strömungsmechanik ; Mathematisches Modell ; Asymptotische Methode
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Dordrecht :Springer Netherlands :
    UID:
    almahu_9949199292302882
    Umfang: XVIII, 550 p. , online resource.
    Ausgabe: 1st ed. 2002.
    ISBN: 9780306483868
    Serie: Fluid Mechanics and Its Applications, 64
    Inhalt: for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful.
    Anmerkung: Introductory Comments and Summary -- Introductory Comments and Summary -- Setting the Scene -- Newtonian Fluid Flow: Equations and Conditions -- Some Basic Aspects of Asymptotic Analysis and Modelling -- Useful Limiting Forms of the NS-F Equations -- Main Astmptotic Models -- The Navier-Fourier Viscous Incompressible Model -- The Inviscid/Nonviscous Euler Model and Some Hydro-Aerodynamics Problems -- Boundary-Layer Models for High-Reynolds Numbers -- Some Models of Nonlinear Acoustics -- Low-Reynolds Numbers Asymptotics -- Three Specific Asymptotic Models -- Asymptotic Modelling of Thermal Convection and Interfacial Phenomena -- Meteo-Fluid-Dynamics Models -- Singular Coupling and the Triple-Deck Model.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9789048159390
    Weitere Ausg.: Printed edition: ISBN 9781402004322
    Weitere Ausg.: Printed edition: ISBN 9789401742757
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Buch
    Buch
    Dordrecht : Kluwer Academic Publishers
    UID:
    gbv_340110147
    Umfang: XVIII, 545 S , graph. Darst , 25 cm
    ISBN: 140200432X
    Serie: Fluid mechanics and its applications 64
    Anmerkung: Includes bibliographical references
    Sprache: Englisch
    Fachgebiete: Physik
    RVK:
    Schlagwort(e): Strömung ; Asymptotische Methode ; Strömungsmechanik ; Mathematisches Modell ; Asymptotische Methode
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Online-Ressource
    Online-Ressource
    Dordrecht : Springer Netherlands
    UID:
    b3kat_BV042410851
    Umfang: 1 Online-Ressource (XVIII, 550 p)
    ISBN: 9780306483868 , 9781402004322
    Serie: Fluid Mechanics and Its Applications 64
    Anmerkung: for the fluctuations around the means but rather fluctuations, and appearing in the following incompressible system of equations: on any wall; at initial time, and are assumed known. This contribution arose from discussion with J. P. Guiraud on attempts to push forward our last co-signed paper (1986) and the main idea is to put a stochastic structure on fluctuations and to identify the large eddies with a part of the probability space. The Reynolds stresses are derived from a kind of Monte-Carlo process on equations for fluctuations. Those are themselves modelled against a technique, using the Guiraud and Zeytounian (1986). The scheme consists in a set of like equations, considered as random, because they mimic the large eddy fluctuations. The Reynolds stresses are got from stochastic averaging over a family of their solutions. Asymptotics underlies the scheme, but in a rather loose hidden way. We explain this in relation with homogenizati- localization processes (described within the §3. 4 ofChapter 3). Ofcourse the mathematical well posedness of the scheme is not known and the numerics would be formidable! Whether this attempt will inspire researchers in the field of highly complex turbulent flows is not foreseeable and we have hope that the idea will prove useful
    Sprache: Englisch
    Schlagwort(e): Strömung ; Asymptotische Methode
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781402001222?
Meinten Sie 9781402003332?
Meinten Sie 9781402001321?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz