Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    London : Springer
    UID:
    gbv_749126124
    Umfang: Online-Ressource (XII, 233 p) , digital
    Ausgabe: Reproduktion Springer eBook Collection. Computer Science
    ISBN: 9780857293886
    Serie: Advanced Information and Knowledge Processing
    Inhalt: The Web has emerged as a large, distributed data repository, and information on the Internet and in existing transaction databases can be analyzed for commercial gains in decision making. Therefore, how to efficiently identify quality knowledge from different data sources uncovers a significant challenge. This challenge has attracted wide interest from both academia and the industry. Knowledge Discovery in Multiple Databases provides a comprehensive introduction to the latest advancements in multi-database mining, and presents a local-pattern analysis framework for pattern discovery from multiple data sources. Based on this framework, data preparation techniques in multiple databases, an application-independent database classification for data reduction, and efficient algorithms for pattern discovery from multiple databases are described. Knowledge Discovery in Multiple Databases is suitable for researchers, professionals and students in data mining, distributed data analysis, and machine learning, who are interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might involve knowledge discovery in databases and data mining
    Weitere Ausg.: ISBN 9781447110507
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781447110507
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781852337032
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780857293893
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    Mehr zum Autor: Zhang, Shichao
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almahu_9948621317002882
    Umfang: XII, 233 p. , online resource.
    Ausgabe: 1st ed. 2004.
    ISBN: 9780857293886
    Serie: Advanced Information and Knowledge Processing,
    Inhalt: Many organizations have an urgent need of mining their multiple databases inherently distributed in branches (distributed data). In particular, as the Web is rapidly becoming an information flood, individuals and organizations can take into account low-cost information and knowledge on the Internet when making decisions. How to efficiently identify quality knowledge from different data sources has become a significant challenge. This challenge has attracted a great many researchers including the au­ thors who have developed a local pattern analysis, a new strategy for dis­ covering some kinds of potentially useful patterns that cannot be mined in traditional multi-database mining techniques. Local pattern analysis deliv­ ers high-performance pattern discovery from multiple databases. There has been considerable progress made on multi-database mining in such areas as hierarchical meta-learning, collective mining, database classification, and pe­ culiarity discovery. While these techniques continue to be future topics of interest concerning multi-database mining, this book focuses on these inter­ esting issues under the framework of local pattern analysis. The book is intended for researchers and students in data mining, dis­ tributed data analysis, machine learning, and anyone else who is interested in multi-database mining. It is also appropriate for use as a text supplement for broader courses that might also involve knowledge discovery in databases and data mining.
    Anmerkung: 1. Importance of Multi-database Mining -- 1.1 Introduction -- 1.2 Role of Multi-database Mining in Real-world Applications -- 1.3 Multi-database Mining Problems -- 1.4 Differences Between Mono- and Multi-database Mining -- 1.5 Evolution of Multi-database Mining -- 1.6 Limitations of Previous Techniques -- 1.7 Process of Multi-database Mining -- 1.8 Features of the Defined Process -- 1.9 Major Contributions of This Book -- 1.10 Organization of the Book -- 2. Data Mining and Multi-database Mining -- 2.1 Introduction -- 2.2 Knowledge Discovery in Databases -- 2.3 Association Rule Mining -- 2.4 Research into Mining Mono-databases -- 2.5 Research into Mining Multi-databases -- 2.6 Summary -- 3. Local Pattern Analysis -- 3.1 Introduction -- 3.2 Previous Multi-database Mining Techniques -- 3.3 Local Patterns -- 3.4 Local Instance Analysis Inspired by Competition in Sports -- 3.5 The Structure of Patterns in Multi-database Environments -- 3.6 Effectiveness of Local Pattern Analysis -- 3.7 Summary -- 4. Identifying Quality Knowledge -- 4.1 Introduction -- 4.2 Problem Statement -- 4.3 Nonstandard Interpretation -- 4.4 Proof Theory -- 4.5 Adding External Knowledge -- 4.6 The Use of the Framework -- 4.7 Summary -- 5. Database Clustering -- 5.1 Introduction -- 5.2 Effectiveness of Classifying -- 5.3 Classifying Databases -- 5.4 Searching for a Good Classification -- 5.5 Algorithm Analysis -- 5.6 Evaluation of Application-independent Database Classification -- 5.7 Summary -- 6. Dealing with Inconsistency -- 6.1 Introduction -- 6.2 Problem Statement -- 6.3 Definitions of Formal Semantics -- 6.4 Weighted Majority -- 6.5 Mastering Local Pattern Sets -- 6.6 Examples of Synthesizing Local Pattern Sets -- 6.7 A Syntactic Characterization -- 6.8 Summary -- 7. Identifying High-vote Patterns -- 7.1 Introduction -- 7.2 Illustration of High-vote Patterns -- 7.3 Identifying High-vote Patterns -- 7.4 Algorithm Design -- 7.5 Identifying High-vote Patterns Using a Fuzzy Logic Controller -- 7.6 High-vote Pattern Analysis -- 7.7 Suggested Patterns -- 7.8 Summary -- 8. Identifying Exceptional Patterns -- 8.1 Introduction -- 8.2 Interesting Exceptional Patterns -- 8.3 Algorithm Design -- 8.4 Identifying Exceptions with a Fuzzy Logic Controller -- 8.5 Summary -- 9. Synthesizing Local Patterns by Weighting -- 9.1 Introduction -- 9.2 Problem Statement -- 9.3 Synthesizing Rules by Weighting -- 9.4 Improvement of Synthesizing Model -- 9.5 Algorithm Analysis -- 9.6 Summary -- 10. Conclusions and Future Work -- 10.1 Conclusions -- 10.2 Future Work -- References.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9781447110507
    Weitere Ausg.: Printed edition: ISBN 9781852337032
    Weitere Ausg.: Printed edition: ISBN 9780857293893
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781447110057?
Meinten Sie 9781447115007?
Meinten Sie 9781407130507?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz