Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    Boston, MA :Birkhäuser Boston :
    UID:
    almahu_9947362868902882
    Umfang: XI, 132 p. , online resource.
    ISBN: 9781461201953
    Serie: Progress in Nonlinear Differential Equations and Their Applications ; 44
    Inhalt: In recent years, the study of the Monge-Ampere equation has received consider­ able attention and there have been many important advances. As a consequence there is nowadays much interest in this equation and its applications. This volume tries to reflect these advances in an essentially self-contained systematic exposi­ tion of the theory of weak: solutions, including recent regularity results by L. A. Caffarelli. The theory has a geometric flavor and uses some techniques from har­ monic analysis such us covering lemmas and set decompositions. An overview of the contents of the book is as follows. We shall be concerned with the Monge-Ampere equation, which for a smooth function u, is given by (0.0.1) There is a notion of generalized or weak solution to (0.0.1): for u convex in a domain n, one can define a measure Mu in n such that if u is smooth, then Mu 2 has density det D u. Therefore u is a generalized solution of (0.0.1) if M u = f.
    Anmerkung: 1 Generalized Solutions to Monge-Ampere Equations -- 1.1 The normal mapping -- 1.2 Generalized solutions -- 1.3 Viscosity solutions -- 1.4 Maximum principles -- 1.5 The Dirichlet problem -- 1.6 The nonhomogeneous Dirichlet problem -- 1.7 Return to viscosity solutions -- 1.8 Ellipsoids of minimum volume -- 1.9 Notes -- 2 Uniformly Elliptic Equations in Nondivergence Form -- 2.1 Critical density estimates -- 2.2 Estimate of the distribution function of solutions -- 2.3 Harnack’s inequality -- 2.4 Notes -- 3 The Cross-sections of Monge-Ampere -- 3.1 Introduction -- 3.2 Preliminary results -- 3.3 Properties of the sections -- 3.4 Notes -- 4 Convex Solutions of det D2u = 1 in ?n -- 4.1 Pogorelov’s Lemma -- 4.2 Interior Hölder estimates of D2u -- 4.3 C?estimates of D2u -- 4.4 Notes -- 5 Regularity Theory for the Monge-Ampère Equation -- 5.1 Extremal points -- 5.2 A result on extremal points of zeroes of solutions to Monge-Ampère -- 5.3 A strict convexity result -- 5.4 C1,?regularity -- 5.5 Examples -- 5.6 Notes -- 6 W2pEstimates for the Monge-Ampere Equation -- 6.1 Approximation Theorem -- 6.2 Tangent paraboloids -- 6.3 Density estimates and power decay -- 6.4 LP estimates of second derivatives -- 6.5 Proof of the Covering Theorem 6.3.3 -- 6.6 Regularity of the convex envelope -- 6.7 Notes.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9781461266563
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    URL: Cover
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Boston, MA : Birkhäuser Boston
    UID:
    b3kat_BV042419476
    Umfang: 1 Online-Ressource (XI, 132 p)
    ISBN: 9781461201953 , 9781461266563
    Serie: Progress in Nonlinear Differential Equations and Their Applications 44
    Anmerkung: In recent years, the study of the Monge-Ampere equation has received considerable attention and there have been many important advances. As a consequence there is nowadays much interest in this equation and its applications. This volume tries to reflect these advances in an essentially self-contained systematic exposition of the theory of weak: solutions, including recent regularity results by L. A. Caffarelli. The theory has a geometric flavor and uses some techniques from harmonic analysis such us covering lemmas and set decompositions. An overview of the contents of the book is as follows. We shall be concerned with the Monge-Ampere equation, which for a smooth function u, is given by (0.0.1) There is a notion of generalized or weak solution to (0.0.1): for u convex in a domain n, one can define a measure Mu in n such that if u is smooth, then Mu 2 has density det D u. Therefore u is a generalized solution of (0.0.1) if M u = f
    Sprache: Englisch
    Schlagwort(e): Monge-Ampère-Differentialgleichung
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781461200956?
Meinten Sie 9781461201458?
Meinten Sie 9781461201113?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz