Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    New York, NY : Springer New York
    UID:
    b3kat_BV042411066
    Umfang: 1 Online-Ressource (XIII, 285 p)
    ISBN: 9781461212904 , 9781461270805
    Serie: Graduate Texts in Contemporary Physics
    Anmerkung: The origins of multiple scattering theory (MST) can be traced back to Lord Rayleigh's publication of a paper treating the electrical resistivity of an array of spheres, which appeared more than a century ago. At its most basic, MST provides a technique for solving a linear partial differential equation defined over a region of space by dividing space into nonoverlapping subregions, solving the differential equation for each of these subregions separately and then assembling these partial solutions into a global physical solution that is smooth and continuous over the entire region. This approach has given rise to a large and growing list of applications both in classical and quantum physics. Presently, the method is being applied to the study of membranes and colloids, to acoustics, to electromagnetics, and to the solution of the quantum-mechanical wave equation. It is with this latter application, in particular, with the solution of the Schrödinger and the Dirac equations, that this book is primarily concerned. We will also demonstrate that it provides a convenient technique for solving the Poisson equation in solid materials. These differential equations are important in modern calculations of the electronic structure of solids. The application of MST to calculate the electronic structure of solid materials, which originated with Korringa's famous paper of 1947, provided an efficient technique for solving the one-electron Schrodinger equation
    Sprache: Englisch
    Schlagwort(e): Vielfachstreuung ; Festkörper ; Elektronenstruktur
    URL: Volltext  (lizenzpflichtig)
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    New York, NY :Springer New York :
    UID:
    almahu_9949199188502882
    Umfang: XIII, 285 p. , online resource.
    Ausgabe: 1st ed. 2000.
    ISBN: 9781461212904
    Serie: Graduate Texts in Contemporary Physics
    Inhalt: The origins of multiple scattering theory (MST) can be traced back to Lord Rayleigh's publication of a paper treating the electrical resistivity of an ar­ ray of spheres, which appeared more than a century ago. At its most basic, MST provides a technique for solving a linear partial differential equa­ tion defined over a region of space by dividing space into nonoverlapping subregions, solving the differential equation for each of these subregions separately and then assembling these partial solutions into a global phys­ ical solution that is smooth and continuous over the entire region. This approach has given rise to a large and growing list of applications both in classical and quantum physics. Presently, the method is being applied to the study of membranes and colloids, to acoustics, to electromagnetics, and to the solution of the quantum-mechanical wave equation. It is with this latter application, in particular, with the solution of the SchrOdinger and the Dirac equations, that this book is primarily concerned. We will also demonstrate that it provides a convenient technique for solving the Poisson equation in solid materials. These differential equations are important in modern calculations of the electronic structure of solids. The application of MST to calculate the electronic structure of solid ma­ terials, which originated with Korringa's famous paper of 1947, provided an efficient technique for solving the one-electron Schrodinger equation.
    Anmerkung: 1 Introduction -- 1.1 Basic Characteristics of MST -- 1.2 Electronic Structure Calculations -- 1.3 The Aim of This Book -- References -- 2 Intuitive Approach to MST -- 2.1 Huygens' Principle and MST -- 2.2 Time-Independent Green Functions -- References -- 3 Single-Potential Scattering -- 3.1 Partial-Wave Analysis of Single Potential Scattering -- 3.2 General Considerations -- 3.3 Spherically Symmetric Potentials -- 3.4 Nonspherical Potentials -- 3.5 Wave Function in the Moon Region -- 3.6 Effect of the Potential in the Moon Region -- 3.7 Convergence of Basis Function Expansions (*) -- References -- 4 Formal Development of MST -- 4.1 Scattering Theory for a Single Potential -- 4.2 Two-Potential Scattering -- 4.3 The Equations of Multiple Scattering Theory -- 4.4 Representations -- 4.5 Muffin-Tin Potentials -- References -- 5 MST for Muffin-Tin Potentials -- 5.1 Multiple Scattering Series -- 5.2 The Green Function in MST -- 5.3 Impurities in MST -- 5.4 Coherent Potential Approximation -- 5.5 Screened MST -- 5.6 Alternative Derivation of MST -- 5.7 Korringa's Derivation -- 5.8 Relation to Muffin-Tin Orbital Theory -- 5.9 MST for E 〈 0 -- 5.10 The Convergence Properties of MST (*) -- References -- 6 MST for Space-Filling Cells -- 6.1 Historical Development of Full-Cell MST -- 6.2 Derivations of MST for Space-Filling Cells -- 6.3 Full-Cell MST -- 6.4 The Green Function and Bloch Function -- 6.5 Variational Formalisms -- 6.6 Second Variational Derivation (*) -- 6.7 Construction of the Wave Function -- 6.8 The Closure of Internal Sums (*) -- 6.9 Numerical Results -- 6.10 Square Versus Rectangular Matrices (*) -- References -- 7 Augmented MST(*) -- 7.1 General Comments -- 7.2 MST with a Truncated Basis Set: MT Potentials -- 7.3 General Potentials -- 7.4 Green Functions and the Lloyd Formula -- 7.5 Numerical Study of Two Muffin-Tin Potentials -- 7.6 Convergence of Electronic Structure Calculations -- References -- 8 Relativistic Formalism -- 8.1 General Comments -- 8.2 Generalized Partial Waves -- 8.3 Generalized Structure Constants -- 8.4 Free-Particle Solutions -- 8.5 Relativistic Single-Site Scattering Theory -- 8.6 Relativistic Multiple Scattering Theory -- References -- 9 The Poisson Equation -- 9.1 General Comments -- 9.2 Multipole Moments -- 9.3 Comparison with the Schrödinger Equation -- 9.4 Convex Polyhedral Cells -- 9.5 Numerical Results for Convex Cells -- 9.6 Concave Cells -- 9.7 Direct Analogy with MST -- References -- A Time-Dependent Green Functions -- B Time-Independent Green Functions -- C Spherical Functions -- C.1 The Spherical Harmonics -- C.2 The Bessel, Neumann, and Hankel Functions -- C.3 Solutions of the Helmholtz Equation -- References -- D Displacements of Spherical Functions References D -- References -- E The Two-Dimensional Square Cell -- E.1 Numerical Results (*) -- References -- F Formal Scattering Theory -- F.1 General Comments -- F.2 Initial Conditions and the Møller Operators -- F.3 The Møller Wave Operators -- F.4 The Lippmann-Schwinger Equation -- References -- G Irregular Solutions to the Schrödinger Equation -- H Displacement of Irregular Solutions -- K Conversion of Volume Integrals -- L Energy Derivatives -- M Convergence of the Secular Matrix -- N Summary of MST -- N.1 General Framework -- N.2 Single Potential -- N.3 Multiple Scattering Theory.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9781461270805
    Weitere Ausg.: Printed edition: ISBN 9780387988535
    Weitere Ausg.: Printed edition: ISBN 9781461212911
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781461210924?
Meinten Sie 9781461211204?
Meinten Sie 9781461212140?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz