Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Schlagwörter
Zugriff
  • 1
    Online-Ressource
    Online-Ressource
    New York, NY :Springer New York :
    UID:
    almahu_9947362991602882
    Umfang: XVII, 249 p. , online resource.
    ISBN: 9781461214946
    Serie: Springer Series in Statistics,
    Inhalt: Prediction of a random field based on observations of the random field at some set of locations arises in mining, hydrology, atmospheric sciences, and geography. Kriging, a prediction scheme defined as any prediction scheme that minimizes mean squared prediction error among some class of predictors under a particular model for the field, is commonly used in all these areas of prediction. This book summarizes past work and describes new approaches to thinking about kriging.
    Anmerkung: 1 Linear Prediction -- 1.1 Introduction -- 1.2 Best linear prediction -- 1.3 Hilbert spaces and prediction -- 1.4 An example of a poor BLP -- 1.5 Best linear unbiased prediction -- 1.6 Some recurring themes -- 1.7 Summary of practical suggestions -- 2 Properties of Random Fields -- 2.1 Preliminaries -- 2.2 The turning bands method -- 2.3 Elementary properties of autocovariance functions -- 2.4 Mean square continuity and differentiability -- 2.5 Spectral methods -- 2.6 Two corresponding Hilbert spaces -- 2.7 Examples of spectral densities on 112 -- 2.8 Abelian and Tauberian theorems -- 2.9 Random fields with nonintegrable spectral densities -- 2.10 Isotropic autocovariance functions -- 2.11 Tensor product autocovariances -- 3 Asymptotic Properties of Linear Predictors -- 3.1 Introduction -- 3.2 Finite sample results -- 3.3 The role of asymptotics -- 3.4 Behavior of prediction errors in the frequency domain -- 3.5 Prediction with the wrong spectral density -- 3.6 Theoretical comparison of extrapolation and ointerpolation -- 3.7 Measurement errors -- 3.8 Observations on an infinite lattice -- 4 Equivalence of Gaussian Measures and Prediction -- 4.1 Introduction -- 4.2 Equivalence and orthogonality of Gaussian measures -- 4.3 Applications of equivalence of Gaussian measures to linear prediction -- 4.4 Jeffreys’s law -- 5 Integration of Random Fields -- 5.1 Introduction -- 5.2 Asymptotic properties of simple average -- 5.3 Observations on an infinite lattice -- 5.4 Improving on the sample mean -- 5.5 Numerical results -- 6 Predicting With Estimated Parameters -- 6.1 Introduction -- 6.2 Microergodicity and equivalence and orthogonality of Gaussian measures -- 6.3 Is statistical inference for differentiable processes possible? -- 6.4 Likelihood Methods -- 6.5 Matérn model -- 6.6 A numerical study of the Fisher information matrix under the Matérn model -- 6.7 Maximum likelihood estimation for a periodic version of the Matérn model -- 6.8 Predicting with estimated parameters -- 6.9 An instructive example of plug-in prediction -- 6.10 Bayesian approach -- A Multivariate Normal Distributions -- B Symbols -- References.
    In: Springer eBooks
    Weitere Ausg.: Printed edition: ISBN 9781461271666
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    New York :Springer,
    UID:
    almahu_9949087841802882
    Umfang: 1 online resource (262 pages) : , illustrations.
    ISBN: 9781461214946 (e-book)
    Serie: Springer series in statistics
    Anmerkung: "With 27 illustrations."
    Weitere Ausg.: Print version: Stein, Michael Leonard. Interpolation of spatial data : some theory for kriging. New York : Springer, [1999] ISBN 9781461271666
    Sprache: Englisch
    Schlagwort(e): Electronic books.
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781461214496?
Meinten Sie 9781461212546?
Meinten Sie 9781461212966?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz