Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    New York, NY :Springer New York,
    UID:
    almahu_9947362978202882
    Format: XVI, 560 p. , online resource.
    ISBN: 9781461261100
    Series Statement: Applied Mathematical Sciences, 31
    Note: I. Historical Prologue -- 1. Introduction -- 2. Methods Based Upon Variational Principles -- 3. Historical Comments on Terminology -- II. Sturmian Theory for Real Linear Homogeneous Second Order Ordinary Differential Equations on a Compact Interval -- 1. Introduction -- 2. Preliminary Properties of Solutions of (1.1) -- 3. The Classical Oscillation and Comparison Theorems of Sturm -- 4. Related Oscillation and Comparison Theorems -- 5. Sturmian Differential Systems -- 6. Polar Coordinate Transformations -- 7. Transformations for Differential Equations and Systems -- 8. Variational Properties of Solutions of (1.1) -- 9. Comparison Theorems -- 10. Morse Fundamental Quadratic Forms for Conjugate and Focal Points -- 11. Survey of Recent Literature -- 12. Topics and Exercises -- III. Self-Adjoint Boundary Problems Associated with Second Order Linear Differential Equations -- 1. A Canonical Form for Boundary Conditions -- 2 Extremum Problems for Self-Adjoint Systems -- 3. Comparison Theorems -- 4. Comments on Recent Literature -- 5. Topics and Exercises -- IV. Oscillation Theory on a Non-Compact Interval -- 1. Introduction -- 2. Integral Criteria for Oscillation and Non-Oscillation -- 3. Principal Solutions -- 4. Theory of Singular Quadratic Functionals -- 5. Interrelations Between Oscillation Criteria and Boundary Problems -- 6. Strong and Conditional Oscillation -- 7. A Class of Sturmian Problems on a Non-Compact Interval -- 8. Topics and Exercises -- V. Sturmian Theory for Differential Systems -- 1. Introduction -- 2. Special Examples -- 3. Preliminary Properties of Solutions of (2.5) -- 4. Associated Riccati Matrix Differential Equations -- 5. Normality and Abnormality -- 6. Variational Properties of Solutions of (3.1) -- 7. Comparison Theorems -- 8. Morse Fundamental Hermitian Forms -- 9. Generalized Polar Coordinate Transformations for Matrix Differential Systems -- 10. Matrix Oscillation Theory -- 11. Principal Solutions -- 12. Comments on Systems (3.1) Which are Not Identically Normal -- 13. Comments on the Literature on Oscillation Theory for Hamiltonian Systems (3.1) -- 14. Higher Order Differential Equations -- 15. Topics and Exercises -- VI. Self-Adjoint Boundary Problems -- 1. Introduction -- 2. Normality and Abnormality of Boundary Problems -- 3. Self-Adjoint Boundary Problems Associated with (B) -- 4. Comparison Theorems -- 5. Treatment of Self-Adjoint Boundary Problems by Matrix Oscillation Theory -- 6. Notes and Comments on the Literature -- 7. Topics and Exercises -- VII. A Class of Definite Boundary Problems -- 1. Introduction -- 2. Definitely Self-Adjoint Boundary Problems -- 3. Comments on Related Literature -- 4. Topics and Exercises -- VIII. Generalizations of Sturmian Theory -- 1. Introduction -- 2. Integro-Differential Boundary Problems -- 3. A Class of Generalized Differential Equations -- 4. Hestenes Quadratic Form Theory in a Hilbert Space -- 5. The Weinstein Method of Intermediate Problems -- 6. Oscillation Phenomena for Hamiltonian Systems in a B*-Algebra -- 7. Topological Interpretations of the Sturmian Theorems -- Abbreviations for Mathematical Publications Most Frequently Used -- Special Symbols -- Author Index.
    In: Springer eBooks
    Additional Edition: Printed edition: ISBN 9780387905426
    Language: English
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
  • 2
    Online Resource
    Online Resource
    New York, NY : Springer New York
    UID:
    b3kat_BV042420453
    Format: 1 Online-Ressource (584p)
    ISBN: 9781461261100 , 9780387905426
    Series Statement: Applied Mathematical Sciences 31
    Note: A major portion of the study of the qualitative nature of solutions of differential equations may be traced to the famous 1836 paper of Sturm [1], (here, as elsewhere throughout this manuscript, numbers in square brackets refer to the bibliography at the end of this volume), dealing with oscillation and comparison theorems for linear homogeneous second order ordinary differential equations. The associated work of Liouville introduced a type of boundary problem known as a "Sturm-Liouville problem", involving, in particular, an introduction to the study of the asymptotic behavior of solutions of linear second order differential equations by the use of integral equations. In the quarter century following the 1891 Göttingen dissertation [1] of Maxime Bacher (1867-1918), he was instrumental in the elaboration and extension of the oscillation, separation, and comparison theorems of Sturm, both in his many papers on the subject and his lectures at the Sorbonne in 1913-1914, which were subsequently published as his famous Leaons sur Zes methodes de Sturm [7]
    Language: English
    Keywords: Gewöhnliche Differentialgleichung ; Sturm-Liouville-Differenzengleichung ; Randwertproblem ; Lineare gewöhnliche Differentialgleichung
    Library Location Call Number Volume/Issue/Year Availability
    BibTip Others were also interested in ...
Did you mean 9781461241300?
Did you mean 9781461211020?
Did you mean 9781461211600?
Close ⊗
This website uses cookies and the analysis tool Matomo. Further information can be found on the KOBV privacy pages