Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
Zugriff
  • 1
    UID:
    almahu_9949198568602882
    Umfang: XXIX, 478 p. , online resource.
    Ausgabe: 1st ed. 2001.
    ISBN: 9781461516071
    Serie: Electronic Materials Series ; 8
    Inhalt: Infrared (IR) detectors fall into two main categories, thermal and photon. The earliest detectors of IR were thermal in nature, e.g. thermometers. The subsequent developments of these detectors, such as thermopiles, resistance bolometers, Golay cells and pyroelectric detectors, can operate at ambient temperature but have disadvantages of insensitivity and slowness. A wide variety of semiconductor photon detectors have been developed and these possess very high sensitivity, high frequency response but have the disadvantage of needing cryogenic cooling, particularly at longer wavelengths. In the main, the applications have been in the military sphere, but widespread industrial and scientific applications also exist. The majority of development funding for these semiconducting IR detectors has, however, come from military sources. This book is an attempt to provide an up-to-date view of the various IR detector/emitter materials systems currently in use or being actively researched. The book is aimed at newcomers to the field and at those already working in the IR industry. It is hoped that the former will find the book readable both as an introductory text and as a useful guide to the literature. Workers in one of the various IR areas will, hopefully, find the book useful in bringing them up-to-date with other, sometimes competing, technologies. To both groups of readers we trust that the book will prove interesting, thought-provoking and a spur to further progress in this fascinating and challenging field of endeavour.
    Anmerkung: 1 Introduction to Infrared Devices and Fundamentals of their Operation -- 1.1 Introduction -- 1.2 Types of IR detector -- 1.3 Emitters -- References -- 2 Assessment of Infrared Materials and Devices -- 2.1 Introduction -- 2.2 Material Characterization -- 2.3 Device Characterization -- 2.4 Detector Comparisons -- 2.5 Emitter Comparisons -- References -- 3 IV-VI (Lead Chalcogenide) Infrared Sensors and Lasers -- 3.1 Introduction -- 3.2 Some Material Properties -- 3.3 Growth Techniques -- 3.4 Infrared Sensors -- 3.5 Lead Salt Infrared Emitters -- References -- 4 Metal Silicide Schottky Infrared Detector Arrays -- 4.1 Introduction -- 4.2 Internal Photoemission -- 4.3 Silicon Substrate -- 4.4 Platinum Silicide -- 4.5 Cut-off Extension -- 4.6 Pixel Design -- 4.7 PtSi SB FPAs -- 4.8 Summary -- References -- 5 Pyroelectric Materials and Devices -- 5.1 Introduction -- 5.2 The Physics of Pyroelectric Detectors -- 5.3 Pyroelectric Materials and Their Selection -- 5.4 Pyroelectric Thermal Imaging -- 5.5 Pyroelectric Arrays, Design, Technology and Performance -- References -- 6 Uncooled Microbolometer Infrared Sensor Arrays -- 6.1 Introduction -- 6.2 Fabrication of Arrays of Thermal Sensors -- 6.3 Micromachined Microbolometer Design and Fabrication -- 6.4 Temperature-Sensitive Resistor Materials for Microbolometers -- 6.5 Microbolometer Micromachining Sequence -- 6.6 Typical Microbolometer Parameters -- 6.7 Thermal Isolation of Microbolometers -- 6.8 Infrared Absorption in Microbolometers -- 6.9 Readout of Two-dimensional Arrays of Microbolometers -- 6.10 Calculation of the Performance of Bolometer Arrays -- 6.11 Practical Infrared Cameras Using Microbolometer Array -- 6.12 Conclusion -- Acknowledgments -- References -- 7 InSb: Materials and Devices -- 7.1 InSb: the New-Old IR Material -- 7.2 InSb is Different -- 7.3 Purification and Doping -- 7.4 Crystal Growth -- 7.5 Fabrication -- 7.6 Finishing -- 7.7 Useful Techniques -- 7.8 InSb Devices -- References -- 8 Growth, Properties and Infrared Device Characteristics of Strained InAsSb-Based Materials -- 8.1 Introduction -- 8.2 Growth and Characterization of InAsSb by Metal-Organic Chemical Vapor Deposition (MOCVD) -- 8.3 Infrared Device Results -- 8.4 Summary and Future Directions -- Acknowledgments -- References -- 9 Tl-Based III-V Alloy Semiconductors -- 9.1 Introduction -- 9.2 Expected Properties of Tl-Based III-V Alloys -- 9.3 Growth Issues -- 9.4 TlInSb on InSb -- 9.5 TuInAs on InAs -- 9.6 T1InP on InP -- 9.7 T1GaP on GaAs -- 9.8 T1GaAs on GaAs -- 9.9 T1InGaP on InP -- 9.10 TlInGaAs on InP -- 9.11 Summary -- References -- 10 MCT Materials Aspects -- 10.1 Introduction -- 10.2 Bulk Growth Techniques -- 10.3 Liquid Phase Epitaxy (LPE) -- 10.4 Metal-Organic Vapor Phase Epitaxy (MOVPE) -- 10.5 Molecular Beam Epitaxy (MBE) -- References -- 11 Photoconductive and Non-equilibrium Devices in HgCdTe and Related Alloys -- 11.1 Introduction -- 11.2 Photoconductive Detectors -- 11.3 Non-equilibrium Devices -- 11.4 Conclusions -- Further Reading -- References -- 12 Photovoltaic Detectors in MCT -- 12.1 Introduction -- 12.2 Historical Perspective on Photovoltaic Detectors in MCT -- 12.3 MCT Hybrid Focal Plane Array Configurations -- 12.4 Principles of Operation and Figures of Merit for MCT PV Detectors -- 12.5 Junction Current Mechanisms for MCT Photodiodes -- 12.6 MCT Junction Photodiode Architectures -- 12.7 Recent Advances in SW and MW MCT Photodiodes -- 12.8 Recent Advances in VLW MCT Photodiodes -- 12.9 Dual-Band MCT Detector Arrays -- 12.10 Summary, Conclusions and Trends -- Acknowledgments -- References -- Appendix A: Guide to the HgCdTe Literature -- 13 Hg-Based Alternatives to MCT -- 13.1 Introduction -- 13.2 Crystal Growth -- 13.3 Some Physical Properties -- 13.4 HgZnTe Detectors -- 13.5 HgMnTe Detectors -- 13.6 Conclusions -- References -- 14 Reduced-Dimensionality HgTe-CdTe for the Infrared -- 14.1 Introduction -- 14.2 Energy Bands and Effective Masses -- 14.3 MBE Growth -- 14.4 Absorption, Lifetime, and IR Detectors -- 14.5 Photoluminescence -- 14.6 IR Lasers -- 14.7 Summary -- References -- 15 Quantum Well Infra-red Detectors -- 15.1 Introduction -- 15.2 The QWIP as a Photoconductive Detector -- 15.3 The Microscopic Physics of the QWIP -- 15.4 Performance of AlGaAs/GaAs QWIPs -- 15.5 Optical Coupling Methods -- 15.6 Imaging Arrays -- 15.7 QWIPs in materials other than n-type AlGaAs/GaAs -- 15.8 Conclusions and Future Prospects -- References.
    In: Springer Nature eBook
    Weitere Ausg.: Printed edition: ISBN 9781461516088
    Weitere Ausg.: Printed edition: ISBN 9781461356387
    Weitere Ausg.: Printed edition: ISBN 9780792372066
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Online-Ressource
    Online-Ressource
    Boston, MA : Springer US
    UID:
    gbv_772882177
    Umfang: Online-Ressource (XXIX, 478 p) , online resource
    Ausgabe: Reproduktion Springer eBook Collection. Chemistry and Materials Science
    ISBN: 9781461516071
    Serie: Electronic Materials Series 8
    Inhalt: Infrared Detectors and Emitters: Materials and Devices provides an up-to-date view of the various detector/emitter materials systems currently in use or being actively researched. After an introduction to the history of IR detectors and emitters and the assessment methods used in both materials selection and device characterization, a review of detectors and lasers made in IV-VI materials is provided. Metal silicide Schottky IR detectors are then discussed before the emphasis switches to thermal detectors and medium wavelength IR (MWIR) detectors and emitters based on bulk and epitaxial InSb. The ternary system, InAsSb, is then discussed before the current situation in thallium-based III-V compounds, both ternary and quaternary, for IR detectors and emitters for the LW region is summarized. The dominant IR material, particularly in the LWIR region, is still mercury cadmium telluride (MCT) and chapters 10-12 focus on this system and the wide array of detectors and emitters. The final three chapters are devoted to an examination of the challenges to the dominant position of MCT in the LWIR field. The book is aimed at newcomers to the field as well as those already working in the IR industry. The former will find the book readable both as an introductory text and as a useful guide to the literature, while those in industry will find it a valuable overview of the entire field
    Weitere Ausg.: ISBN 9780792372066
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781461516088
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9781461356387
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe ISBN 9780792372066
    Sprache: Englisch
    URL: Volltext  (lizenzpflichtig)
    Mehr zum Autor: Capper, Peter
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781461416388?
Meinten Sie 9781461416081?
Meinten Sie 9781461216988?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz