Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
Medientyp
Sprache
Region
Bibliothek
Erscheinungszeitraum
  • 1
    Online-Ressource
    Online-Ressource
    Washington, D.C : International Monetary Fund
    UID:
    gbv_845852094
    Umfang: Online-Ressource (42 p)
    Ausgabe: Online-Ausg.
    ISBN: 1462311296 , 9781462311293
    Serie: IMF Working Papers Working Paper No. 11/179
    Inhalt: This work presents a new technique for temporally benchmarking a time series according to the growth rates preservation principle (GRP) by Causey and Trager (1981). A procedure is developed which (i) transforms the original constrained problem into an unconstrained one, and (ii) applies a Newton''s method exploiting the analytic Hessian of the GRP objective function. We show that the proposed technique is easy to implement, computationally robust and efficient, all features which make it a plausible competitor of other benchmarking procedures (Denton, 1971; Dagum and Cholette, 2006) also in a data-production process involving a considerable amount of series
    Weitere Ausg.: Erscheint auch als Druck-Ausgabe Marini, Marco A Newton's Method for Benchmarking Time Series According to a Growth Rates Preservation Principle Washington, D.C. : International Monetary Fund, 2011 ISBN 9781462311293
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    UID:
    almafu_9958107708702883
    Umfang: 1 online resource (63 p.)
    ISBN: 1-4639-0190-9 , 1-4639-0033-3 , 1-283-56667-2 , 9786613879127 , 1-4639-0038-4
    Serie: IMF Working Papers
    Inhalt: This work presents a new technique for temporally benchmarking a time series according to the growth rates preservation principle (GRP) by Causey and Trager (1981). A procedure is developed which (i) transforms the original constrained problem into an unconstrained one, and (ii) applies a Newton's method exploiting the analytic Hessian of the GRP objective function. We show that the proposed technique is easy to implement, computationally robust and efficient, all features which make it a plausible competitor of other benchmarking procedures (Denton, 1971; Dagum and Cholette, 2006) also in a data-production process involving a considerable amount of series.
    Anmerkung: Description based upon print version of record. , Cover Page; Title Page; Copyright Page; Contents; I. Introduction; II. Growth Rates Preservation and Temporal Benchmarking; A. Modified Denton PFD; III. Gradient Vector and Hessian Matrix of the GRP criterion; IV. From a constrained to an unconstrained minimization problem; A. Eliminating the Linear Equality Constraints; B. Generating an Elimination Matrix by QR factorization; C. The Reduced Unconstrained Minimization Problem; V. Line-Search Algorithms for Unconstrained Minimization; A. Newton's Method with Hessian Modification; B. Steepest Descent and Quasi-Newton Methods , C. Nonlinear Conjugate GradientVI. Projected Steepest Descent and Conjugate Gradient Directions; VII. Solvers' Efficiency and Quality; A. Performance Profiles; B. Denton (1971) series; C. EUQSA and MRTS series; VIII. Conclusions; APPENDIX A. Feasible direction according to Causey and Trager (1981); APPENDIX B. Performance Profiles; REFERENCES; Footnotes , English
    Weitere Ausg.: ISBN 1-4623-1129-6
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    UID:
    edoccha_9958107708702883
    Umfang: 1 online resource (63 p.)
    ISBN: 1-4639-0190-9 , 1-4639-0033-3 , 1-283-56667-2 , 9786613879127 , 1-4639-0038-4
    Serie: IMF Working Papers
    Inhalt: This work presents a new technique for temporally benchmarking a time series according to the growth rates preservation principle (GRP) by Causey and Trager (1981). A procedure is developed which (i) transforms the original constrained problem into an unconstrained one, and (ii) applies a Newton's method exploiting the analytic Hessian of the GRP objective function. We show that the proposed technique is easy to implement, computationally robust and efficient, all features which make it a plausible competitor of other benchmarking procedures (Denton, 1971; Dagum and Cholette, 2006) also in a data-production process involving a considerable amount of series.
    Anmerkung: Description based upon print version of record. , Cover Page; Title Page; Copyright Page; Contents; I. Introduction; II. Growth Rates Preservation and Temporal Benchmarking; A. Modified Denton PFD; III. Gradient Vector and Hessian Matrix of the GRP criterion; IV. From a constrained to an unconstrained minimization problem; A. Eliminating the Linear Equality Constraints; B. Generating an Elimination Matrix by QR factorization; C. The Reduced Unconstrained Minimization Problem; V. Line-Search Algorithms for Unconstrained Minimization; A. Newton's Method with Hessian Modification; B. Steepest Descent and Quasi-Newton Methods , C. Nonlinear Conjugate GradientVI. Projected Steepest Descent and Conjugate Gradient Directions; VII. Solvers' Efficiency and Quality; A. Performance Profiles; B. Denton (1971) series; C. EUQSA and MRTS series; VIII. Conclusions; APPENDIX A. Feasible direction according to Causey and Trager (1981); APPENDIX B. Performance Profiles; REFERENCES; Footnotes , English
    Weitere Ausg.: ISBN 1-4623-1129-6
    Sprache: Englisch
    Bibliothek Standort Signatur Band/Heft/Jahr Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Meinten Sie 9781461321293?
Meinten Sie 9781461318293?
Meinten Sie 9781462519293?
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie auf den KOBV Seiten zum Datenschutz